//===--- Core.cpp - Core ORC APIs (MaterializationUnit, JITDylib, etc.) ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/ExecutionEngine/Orc/Core.h" #include "llvm/Config/llvm-config.h" #include "llvm/ExecutionEngine/Orc/OrcError.h" #include "llvm/IR/Mangler.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #if LLVM_ENABLE_THREADS #include #endif #define DEBUG_TYPE "orc" using namespace llvm; namespace { #ifndef NDEBUG cl::opt PrintHidden("debug-orc-print-hidden", cl::init(false), cl::desc("debug print hidden symbols defined by " "materialization units"), cl::Hidden); cl::opt PrintCallable("debug-orc-print-callable", cl::init(false), cl::desc("debug print callable symbols defined by " "materialization units"), cl::Hidden); cl::opt PrintData("debug-orc-print-data", cl::init(false), cl::desc("debug print data symbols defined by " "materialization units"), cl::Hidden); #endif // NDEBUG // SetPrinter predicate that prints every element. template struct PrintAll { bool operator()(const T &E) { return true; } }; bool anyPrintSymbolOptionSet() { #ifndef NDEBUG return PrintHidden || PrintCallable || PrintData; #else return false; #endif // NDEBUG } bool flagsMatchCLOpts(const JITSymbolFlags &Flags) { #ifndef NDEBUG // Bail out early if this is a hidden symbol and we're not printing hiddens. if (!PrintHidden && !Flags.isExported()) return false; // Return true if this is callable and we're printing callables. if (PrintCallable && Flags.isCallable()) return true; // Return true if this is data and we're printing data. if (PrintData && !Flags.isCallable()) return true; // otherwise return false. return false; #else return false; #endif // NDEBUG } // Prints a set of items, filtered by an user-supplied predicate. template > class SetPrinter { public: SetPrinter(const Set &S, Pred ShouldPrint = Pred()) : S(S), ShouldPrint(std::move(ShouldPrint)) {} void printTo(llvm::raw_ostream &OS) const { bool PrintComma = false; OS << "{"; for (auto &E : S) { if (ShouldPrint(E)) { if (PrintComma) OS << ','; OS << ' ' << E; PrintComma = true; } } OS << " }"; } private: const Set &S; mutable Pred ShouldPrint; }; template SetPrinter printSet(const Set &S, Pred P = Pred()) { return SetPrinter(S, std::move(P)); } // Render a SetPrinter by delegating to its printTo method. template llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const SetPrinter &Printer) { Printer.printTo(OS); return OS; } struct PrintSymbolFlagsMapElemsMatchingCLOpts { bool operator()(const orc::SymbolFlagsMap::value_type &KV) { return flagsMatchCLOpts(KV.second); } }; struct PrintSymbolMapElemsMatchingCLOpts { bool operator()(const orc::SymbolMap::value_type &KV) { return flagsMatchCLOpts(KV.second.getFlags()); } }; } // end anonymous namespace namespace llvm { namespace orc { SymbolStringPool::PoolMapEntry SymbolStringPtr::Tombstone(0); char FailedToMaterialize::ID = 0; char SymbolsNotFound::ID = 0; char SymbolsCouldNotBeRemoved::ID = 0; RegisterDependenciesFunction NoDependenciesToRegister = RegisterDependenciesFunction(); void MaterializationUnit::anchor() {} raw_ostream &operator<<(raw_ostream &OS, const SymbolStringPtr &Sym) { return OS << *Sym; } raw_ostream &operator<<(raw_ostream &OS, const SymbolNameSet &Symbols) { return OS << printSet(Symbols, PrintAll()); } raw_ostream &operator<<(raw_ostream &OS, const JITSymbolFlags &Flags) { if (Flags.isCallable()) OS << "[Callable]"; else OS << "[Data]"; if (Flags.isWeak()) OS << "[Weak]"; else if (Flags.isCommon()) OS << "[Common]"; if (!Flags.isExported()) OS << "[Hidden]"; return OS; } raw_ostream &operator<<(raw_ostream &OS, const JITEvaluatedSymbol &Sym) { return OS << format("0x%016" PRIx64, Sym.getAddress()) << " " << Sym.getFlags(); } raw_ostream &operator<<(raw_ostream &OS, const SymbolFlagsMap::value_type &KV) { return OS << "(\"" << KV.first << "\", " << KV.second << ")"; } raw_ostream &operator<<(raw_ostream &OS, const SymbolMap::value_type &KV) { return OS << "(\"" << KV.first << "\": " << KV.second << ")"; } raw_ostream &operator<<(raw_ostream &OS, const SymbolFlagsMap &SymbolFlags) { return OS << printSet(SymbolFlags, PrintSymbolFlagsMapElemsMatchingCLOpts()); } raw_ostream &operator<<(raw_ostream &OS, const SymbolMap &Symbols) { return OS << printSet(Symbols, PrintSymbolMapElemsMatchingCLOpts()); } raw_ostream &operator<<(raw_ostream &OS, const SymbolDependenceMap::value_type &KV) { return OS << "(" << KV.first << ", " << KV.second << ")"; } raw_ostream &operator<<(raw_ostream &OS, const SymbolDependenceMap &Deps) { return OS << printSet(Deps, PrintAll()); } raw_ostream &operator<<(raw_ostream &OS, const MaterializationUnit &MU) { OS << "MU@" << &MU << " (\"" << MU.getName() << "\""; if (anyPrintSymbolOptionSet()) OS << ", " << MU.getSymbols(); return OS << ")"; } raw_ostream &operator<<(raw_ostream &OS, const JITDylibSearchList &JDs) { OS << "["; if (!JDs.empty()) { assert(JDs.front().first && "JITDylibList entries must not be null"); OS << " (\"" << JDs.front().first->getName() << "\", " << (JDs.front().second ? "true" : "false") << ")"; for (auto &KV : make_range(std::next(JDs.begin()), JDs.end())) { assert(KV.first && "JITDylibList entries must not be null"); OS << ", (\"" << KV.first->getName() << "\", " << (KV.second ? "true" : "false") << ")"; } } OS << " ]"; return OS; } FailedToMaterialize::FailedToMaterialize(SymbolNameSet Symbols) : Symbols(std::move(Symbols)) { assert(!this->Symbols.empty() && "Can not fail to resolve an empty set"); } std::error_code FailedToMaterialize::convertToErrorCode() const { return orcError(OrcErrorCode::UnknownORCError); } void FailedToMaterialize::log(raw_ostream &OS) const { OS << "Failed to materialize symbols: " << Symbols; } SymbolsNotFound::SymbolsNotFound(SymbolNameSet Symbols) : Symbols(std::move(Symbols)) { assert(!this->Symbols.empty() && "Can not fail to resolve an empty set"); } std::error_code SymbolsNotFound::convertToErrorCode() const { return orcError(OrcErrorCode::UnknownORCError); } void SymbolsNotFound::log(raw_ostream &OS) const { OS << "Symbols not found: " << Symbols; } SymbolsCouldNotBeRemoved::SymbolsCouldNotBeRemoved(SymbolNameSet Symbols) : Symbols(std::move(Symbols)) { assert(!this->Symbols.empty() && "Can not fail to resolve an empty set"); } std::error_code SymbolsCouldNotBeRemoved::convertToErrorCode() const { return orcError(OrcErrorCode::UnknownORCError); } void SymbolsCouldNotBeRemoved::log(raw_ostream &OS) const { OS << "Symbols could not be removed: " << Symbols; } AsynchronousSymbolQuery::AsynchronousSymbolQuery( const SymbolNameSet &Symbols, SymbolsResolvedCallback NotifySymbolsResolved, SymbolsReadyCallback NotifySymbolsReady) : NotifySymbolsResolved(std::move(NotifySymbolsResolved)), NotifySymbolsReady(std::move(NotifySymbolsReady)) { NotYetResolvedCount = NotYetReadyCount = Symbols.size(); for (auto &S : Symbols) ResolvedSymbols[S] = nullptr; } void AsynchronousSymbolQuery::resolve(const SymbolStringPtr &Name, JITEvaluatedSymbol Sym) { auto I = ResolvedSymbols.find(Name); assert(I != ResolvedSymbols.end() && "Resolving symbol outside the requested set"); assert(I->second.getAddress() == 0 && "Redundantly resolving symbol Name"); I->second = std::move(Sym); --NotYetResolvedCount; } void AsynchronousSymbolQuery::handleFullyResolved() { assert(NotYetResolvedCount == 0 && "Not fully resolved?"); if (!NotifySymbolsResolved) { // handleFullyResolved may be called by handleFullyReady (see comments in // that method), in which case this is a no-op, so bail out. assert(!NotifySymbolsReady && "NotifySymbolsResolved already called or an error occurred"); return; } auto TmpNotifySymbolsResolved = std::move(NotifySymbolsResolved); NotifySymbolsResolved = SymbolsResolvedCallback(); TmpNotifySymbolsResolved(std::move(ResolvedSymbols)); } void AsynchronousSymbolQuery::notifySymbolReady() { assert(NotYetReadyCount != 0 && "All symbols already emitted"); --NotYetReadyCount; } void AsynchronousSymbolQuery::handleFullyReady() { assert(NotifySymbolsReady && "NotifySymbolsReady already called or an error occurred"); auto TmpNotifySymbolsReady = std::move(NotifySymbolsReady); NotifySymbolsReady = SymbolsReadyCallback(); if (NotYetResolvedCount == 0 && NotifySymbolsResolved) { // The NotifyResolved callback of one query must have caused this query to // become ready (i.e. there is still a handleFullyResolved callback waiting // to be made back up the stack). Fold the handleFullyResolved call into // this one before proceeding. This will cause the call further up the // stack to become a no-op. handleFullyResolved(); } assert(QueryRegistrations.empty() && "Query is still registered with some symbols"); assert(!NotifySymbolsResolved && "Resolution not applied yet"); TmpNotifySymbolsReady(Error::success()); } bool AsynchronousSymbolQuery::canStillFail() { return (NotifySymbolsResolved || NotifySymbolsReady); } void AsynchronousSymbolQuery::handleFailed(Error Err) { assert(QueryRegistrations.empty() && ResolvedSymbols.empty() && NotYetResolvedCount == 0 && NotYetReadyCount == 0 && "Query should already have been abandoned"); if (NotifySymbolsResolved) { NotifySymbolsResolved(std::move(Err)); NotifySymbolsResolved = SymbolsResolvedCallback(); } else { assert(NotifySymbolsReady && "Failed after both callbacks issued?"); NotifySymbolsReady(std::move(Err)); } NotifySymbolsReady = SymbolsReadyCallback(); } void AsynchronousSymbolQuery::addQueryDependence(JITDylib &JD, SymbolStringPtr Name) { bool Added = QueryRegistrations[&JD].insert(std::move(Name)).second; (void)Added; assert(Added && "Duplicate dependence notification?"); } void AsynchronousSymbolQuery::removeQueryDependence( JITDylib &JD, const SymbolStringPtr &Name) { auto QRI = QueryRegistrations.find(&JD); assert(QRI != QueryRegistrations.end() && "No dependencies registered for JD"); assert(QRI->second.count(Name) && "No dependency on Name in JD"); QRI->second.erase(Name); if (QRI->second.empty()) QueryRegistrations.erase(QRI); } void AsynchronousSymbolQuery::detach() { ResolvedSymbols.clear(); NotYetResolvedCount = 0; NotYetReadyCount = 0; for (auto &KV : QueryRegistrations) KV.first->detachQueryHelper(*this, KV.second); QueryRegistrations.clear(); } MaterializationResponsibility::MaterializationResponsibility( JITDylib &JD, SymbolFlagsMap SymbolFlags, VModuleKey K) : JD(JD), SymbolFlags(std::move(SymbolFlags)), K(std::move(K)) { assert(!this->SymbolFlags.empty() && "Materializing nothing?"); #ifndef NDEBUG for (auto &KV : this->SymbolFlags) KV.second |= JITSymbolFlags::Materializing; #endif } MaterializationResponsibility::~MaterializationResponsibility() { assert(SymbolFlags.empty() && "All symbols should have been explicitly materialized or failed"); } SymbolNameSet MaterializationResponsibility::getRequestedSymbols() const { return JD.getRequestedSymbols(SymbolFlags); } void MaterializationResponsibility::resolve(const SymbolMap &Symbols) { LLVM_DEBUG(dbgs() << "In " << JD.getName() << " resolving " << Symbols << "\n"); #ifndef NDEBUG for (auto &KV : Symbols) { auto I = SymbolFlags.find(KV.first); assert(I != SymbolFlags.end() && "Resolving symbol outside this responsibility set"); assert(I->second.isMaterializing() && "Duplicate resolution"); I->second &= ~JITSymbolFlags::Materializing; if (I->second.isWeak()) assert(I->second == (KV.second.getFlags() | JITSymbolFlags::Weak) && "Resolving symbol with incorrect flags"); else assert(I->second == KV.second.getFlags() && "Resolving symbol with incorrect flags"); } #endif JD.resolve(Symbols); } void MaterializationResponsibility::emit() { #ifndef NDEBUG for (auto &KV : SymbolFlags) assert(!KV.second.isMaterializing() && "Failed to resolve symbol before emission"); #endif // NDEBUG JD.emit(SymbolFlags); SymbolFlags.clear(); } Error MaterializationResponsibility::defineMaterializing( const SymbolFlagsMap &NewSymbolFlags) { // Add the given symbols to this responsibility object. // It's ok if we hit a duplicate here: In that case the new version will be // discarded, and the JITDylib::defineMaterializing method will return a // duplicate symbol error. for (auto &KV : NewSymbolFlags) { auto I = SymbolFlags.insert(KV).first; (void)I; #ifndef NDEBUG I->second |= JITSymbolFlags::Materializing; #endif } return JD.defineMaterializing(NewSymbolFlags); } void MaterializationResponsibility::failMaterialization() { SymbolNameSet FailedSymbols; for (auto &KV : SymbolFlags) FailedSymbols.insert(KV.first); JD.notifyFailed(FailedSymbols); SymbolFlags.clear(); } void MaterializationResponsibility::replace( std::unique_ptr MU) { for (auto &KV : MU->getSymbols()) SymbolFlags.erase(KV.first); LLVM_DEBUG(JD.getExecutionSession().runSessionLocked([&]() { dbgs() << "In " << JD.getName() << " replacing symbols with " << *MU << "\n"; });); JD.replace(std::move(MU)); } MaterializationResponsibility MaterializationResponsibility::delegate(const SymbolNameSet &Symbols, VModuleKey NewKey) { if (NewKey == VModuleKey()) NewKey = K; SymbolFlagsMap DelegatedFlags; for (auto &Name : Symbols) { auto I = SymbolFlags.find(Name); assert(I != SymbolFlags.end() && "Symbol is not tracked by this MaterializationResponsibility " "instance"); DelegatedFlags[Name] = std::move(I->second); SymbolFlags.erase(I); } return MaterializationResponsibility(JD, std::move(DelegatedFlags), std::move(NewKey)); } void MaterializationResponsibility::addDependencies( const SymbolStringPtr &Name, const SymbolDependenceMap &Dependencies) { assert(SymbolFlags.count(Name) && "Symbol not covered by this MaterializationResponsibility instance"); JD.addDependencies(Name, Dependencies); } void MaterializationResponsibility::addDependenciesForAll( const SymbolDependenceMap &Dependencies) { for (auto &KV : SymbolFlags) JD.addDependencies(KV.first, Dependencies); } AbsoluteSymbolsMaterializationUnit::AbsoluteSymbolsMaterializationUnit( SymbolMap Symbols, VModuleKey K) : MaterializationUnit(extractFlags(Symbols), std::move(K)), Symbols(std::move(Symbols)) {} StringRef AbsoluteSymbolsMaterializationUnit::getName() const { return ""; } void AbsoluteSymbolsMaterializationUnit::materialize( MaterializationResponsibility R) { R.resolve(Symbols); R.emit(); } void AbsoluteSymbolsMaterializationUnit::discard(const JITDylib &JD, const SymbolStringPtr &Name) { assert(Symbols.count(Name) && "Symbol is not part of this MU"); Symbols.erase(Name); } SymbolFlagsMap AbsoluteSymbolsMaterializationUnit::extractFlags(const SymbolMap &Symbols) { SymbolFlagsMap Flags; for (const auto &KV : Symbols) Flags[KV.first] = KV.second.getFlags(); return Flags; } ReExportsMaterializationUnit::ReExportsMaterializationUnit( JITDylib *SourceJD, bool MatchNonExported, SymbolAliasMap Aliases, VModuleKey K) : MaterializationUnit(extractFlags(Aliases), std::move(K)), SourceJD(SourceJD), MatchNonExported(MatchNonExported), Aliases(std::move(Aliases)) {} StringRef ReExportsMaterializationUnit::getName() const { return ""; } void ReExportsMaterializationUnit::materialize( MaterializationResponsibility R) { auto &ES = R.getTargetJITDylib().getExecutionSession(); JITDylib &TgtJD = R.getTargetJITDylib(); JITDylib &SrcJD = SourceJD ? *SourceJD : TgtJD; // Find the set of requested aliases and aliasees. Return any unrequested // aliases back to the JITDylib so as to not prematurely materialize any // aliasees. auto RequestedSymbols = R.getRequestedSymbols(); SymbolAliasMap RequestedAliases; for (auto &Name : RequestedSymbols) { auto I = Aliases.find(Name); assert(I != Aliases.end() && "Symbol not found in aliases map?"); RequestedAliases[Name] = std::move(I->second); Aliases.erase(I); } if (!Aliases.empty()) { if (SourceJD) R.replace(reexports(*SourceJD, std::move(Aliases), MatchNonExported)); else R.replace(symbolAliases(std::move(Aliases))); } // The OnResolveInfo struct will hold the aliases and responsibilty for each // query in the list. struct OnResolveInfo { OnResolveInfo(MaterializationResponsibility R, SymbolAliasMap Aliases) : R(std::move(R)), Aliases(std::move(Aliases)) {} MaterializationResponsibility R; SymbolAliasMap Aliases; }; // Build a list of queries to issue. In each round we build the largest set of // aliases that we can resolve without encountering a chain definition of the // form Foo -> Bar, Bar -> Baz. Such a form would deadlock as the query would // be waitin on a symbol that it itself had to resolve. Usually this will just // involve one round and a single query. std::vector>> QueryInfos; while (!RequestedAliases.empty()) { SymbolNameSet ResponsibilitySymbols; SymbolNameSet QuerySymbols; SymbolAliasMap QueryAliases; // Collect as many aliases as we can without including a chain. for (auto &KV : RequestedAliases) { // Chain detected. Skip this symbol for this round. if (&SrcJD == &TgtJD && (QueryAliases.count(KV.second.Aliasee) || RequestedAliases.count(KV.second.Aliasee))) continue; ResponsibilitySymbols.insert(KV.first); QuerySymbols.insert(KV.second.Aliasee); QueryAliases[KV.first] = std::move(KV.second); } // Remove the aliases collected this round from the RequestedAliases map. for (auto &KV : QueryAliases) RequestedAliases.erase(KV.first); assert(!QuerySymbols.empty() && "Alias cycle detected!"); auto QueryInfo = std::make_shared( R.delegate(ResponsibilitySymbols), std::move(QueryAliases)); QueryInfos.push_back( make_pair(std::move(QuerySymbols), std::move(QueryInfo))); } // Issue the queries. while (!QueryInfos.empty()) { auto QuerySymbols = std::move(QueryInfos.back().first); auto QueryInfo = std::move(QueryInfos.back().second); QueryInfos.pop_back(); auto RegisterDependencies = [QueryInfo, &SrcJD](const SymbolDependenceMap &Deps) { // If there were no materializing symbols, just bail out. if (Deps.empty()) return; // Otherwise the only deps should be on SrcJD. assert(Deps.size() == 1 && Deps.count(&SrcJD) && "Unexpected dependencies for reexports"); auto &SrcJDDeps = Deps.find(&SrcJD)->second; SymbolDependenceMap PerAliasDepsMap; auto &PerAliasDeps = PerAliasDepsMap[&SrcJD]; for (auto &KV : QueryInfo->Aliases) if (SrcJDDeps.count(KV.second.Aliasee)) { PerAliasDeps = {KV.second.Aliasee}; QueryInfo->R.addDependencies(KV.first, PerAliasDepsMap); } }; auto OnResolve = [QueryInfo](Expected Result) { if (Result) { SymbolMap ResolutionMap; for (auto &KV : QueryInfo->Aliases) { assert(Result->count(KV.second.Aliasee) && "Result map missing entry?"); ResolutionMap[KV.first] = JITEvaluatedSymbol( (*Result)[KV.second.Aliasee].getAddress(), KV.second.AliasFlags); } QueryInfo->R.resolve(ResolutionMap); QueryInfo->R.emit(); } else { auto &ES = QueryInfo->R.getTargetJITDylib().getExecutionSession(); ES.reportError(Result.takeError()); QueryInfo->R.failMaterialization(); } }; auto OnReady = [&ES](Error Err) { ES.reportError(std::move(Err)); }; ES.lookup(JITDylibSearchList({{&SrcJD, MatchNonExported}}), QuerySymbols, std::move(OnResolve), std::move(OnReady), std::move(RegisterDependencies)); } } void ReExportsMaterializationUnit::discard(const JITDylib &JD, const SymbolStringPtr &Name) { assert(Aliases.count(Name) && "Symbol not covered by this MaterializationUnit"); Aliases.erase(Name); } SymbolFlagsMap ReExportsMaterializationUnit::extractFlags(const SymbolAliasMap &Aliases) { SymbolFlagsMap SymbolFlags; for (auto &KV : Aliases) SymbolFlags[KV.first] = KV.second.AliasFlags; return SymbolFlags; } Expected buildSimpleReexportsAliasMap(JITDylib &SourceJD, const SymbolNameSet &Symbols) { auto Flags = SourceJD.lookupFlags(Symbols); if (Flags.size() != Symbols.size()) { SymbolNameSet Unresolved = Symbols; for (auto &KV : Flags) Unresolved.erase(KV.first); return make_error(std::move(Unresolved)); } SymbolAliasMap Result; for (auto &Name : Symbols) { assert(Flags.count(Name) && "Missing entry in flags map"); Result[Name] = SymbolAliasMapEntry(Name, Flags[Name]); } return Result; } ReexportsGenerator::ReexportsGenerator(JITDylib &SourceJD, bool MatchNonExported, SymbolPredicate Allow) : SourceJD(SourceJD), MatchNonExported(MatchNonExported), Allow(std::move(Allow)) {} SymbolNameSet ReexportsGenerator::operator()(JITDylib &JD, const SymbolNameSet &Names) { orc::SymbolNameSet Added; orc::SymbolAliasMap AliasMap; auto Flags = SourceJD.lookupFlags(Names); for (auto &KV : Flags) { if (Allow && !Allow(KV.first)) continue; AliasMap[KV.first] = SymbolAliasMapEntry(KV.first, KV.second); Added.insert(KV.first); } if (!Added.empty()) cantFail(JD.define(reexports(SourceJD, AliasMap, MatchNonExported))); return Added; } Error JITDylib::defineMaterializing(const SymbolFlagsMap &SymbolFlags) { return ES.runSessionLocked([&]() -> Error { std::vector AddedSyms; for (auto &KV : SymbolFlags) { SymbolMap::iterator EntryItr; bool Added; auto NewFlags = KV.second; NewFlags |= JITSymbolFlags::Materializing; std::tie(EntryItr, Added) = Symbols.insert( std::make_pair(KV.first, JITEvaluatedSymbol(0, NewFlags))); if (Added) AddedSyms.push_back(EntryItr); else { // Remove any symbols already added. for (auto &SI : AddedSyms) Symbols.erase(SI); // FIXME: Return all duplicates. return make_error(*KV.first); } } return Error::success(); }); } void JITDylib::replace(std::unique_ptr MU) { assert(MU != nullptr && "Can not replace with a null MaterializationUnit"); auto MustRunMU = ES.runSessionLocked([&, this]() -> std::unique_ptr { #ifndef NDEBUG for (auto &KV : MU->getSymbols()) { auto SymI = Symbols.find(KV.first); assert(SymI != Symbols.end() && "Replacing unknown symbol"); assert(!SymI->second.getFlags().isLazy() && SymI->second.getFlags().isMaterializing() && "Can not replace symbol that is not materializing"); assert(UnmaterializedInfos.count(KV.first) == 0 && "Symbol being replaced should have no UnmaterializedInfo"); } #endif // NDEBUG // If any symbol has pending queries against it then we need to // materialize MU immediately. for (auto &KV : MU->getSymbols()) { auto MII = MaterializingInfos.find(KV.first); if (MII != MaterializingInfos.end()) { if (!MII->second.PendingQueries.empty()) return std::move(MU); } } // Otherwise, make MU responsible for all the symbols. auto UMI = std::make_shared(std::move(MU)); for (auto &KV : UMI->MU->getSymbols()) { assert(!KV.second.isLazy() && "Lazy flag should be managed internally."); assert(!KV.second.isMaterializing() && "Materializing flags should be managed internally."); auto SymI = Symbols.find(KV.first); JITSymbolFlags ReplaceFlags = KV.second; ReplaceFlags |= JITSymbolFlags::Lazy; SymI->second = JITEvaluatedSymbol(SymI->second.getAddress(), std::move(ReplaceFlags)); UnmaterializedInfos[KV.first] = UMI; } return nullptr; }); if (MustRunMU) ES.dispatchMaterialization(*this, std::move(MustRunMU)); } SymbolNameSet JITDylib::getRequestedSymbols(const SymbolFlagsMap &SymbolFlags) const { return ES.runSessionLocked([&]() { SymbolNameSet RequestedSymbols; for (auto &KV : SymbolFlags) { assert(Symbols.count(KV.first) && "JITDylib does not cover this symbol?"); assert(Symbols.find(KV.first)->second.getFlags().isMaterializing() && "getRequestedSymbols can only be called for materializing " "symbols"); auto I = MaterializingInfos.find(KV.first); if (I == MaterializingInfos.end()) continue; if (!I->second.PendingQueries.empty()) RequestedSymbols.insert(KV.first); } return RequestedSymbols; }); } void JITDylib::addDependencies(const SymbolStringPtr &Name, const SymbolDependenceMap &Dependencies) { assert(Symbols.count(Name) && "Name not in symbol table"); assert((Symbols[Name].getFlags().isLazy() || Symbols[Name].getFlags().isMaterializing()) && "Symbol is not lazy or materializing"); auto &MI = MaterializingInfos[Name]; assert(!MI.IsEmitted && "Can not add dependencies to an emitted symbol"); for (auto &KV : Dependencies) { assert(KV.first && "Null JITDylib in dependency?"); auto &OtherJITDylib = *KV.first; auto &DepsOnOtherJITDylib = MI.UnemittedDependencies[&OtherJITDylib]; for (auto &OtherSymbol : KV.second) { #ifndef NDEBUG // Assert that this symbol exists and has not been emitted already. auto SymI = OtherJITDylib.Symbols.find(OtherSymbol); assert(SymI != OtherJITDylib.Symbols.end() && (SymI->second.getFlags().isLazy() || SymI->second.getFlags().isMaterializing()) && "Dependency on emitted symbol"); #endif auto &OtherMI = OtherJITDylib.MaterializingInfos[OtherSymbol]; if (OtherMI.IsEmitted) transferEmittedNodeDependencies(MI, Name, OtherMI); else if (&OtherJITDylib != this || OtherSymbol != Name) { OtherMI.Dependants[this].insert(Name); DepsOnOtherJITDylib.insert(OtherSymbol); } } if (DepsOnOtherJITDylib.empty()) MI.UnemittedDependencies.erase(&OtherJITDylib); } } void JITDylib::resolve(const SymbolMap &Resolved) { auto FullyResolvedQueries = ES.runSessionLocked([&, this]() { AsynchronousSymbolQuerySet FullyResolvedQueries; for (const auto &KV : Resolved) { auto &Name = KV.first; auto Sym = KV.second; assert(!Sym.getFlags().isLazy() && !Sym.getFlags().isMaterializing() && "Materializing flags should be managed internally"); auto I = Symbols.find(Name); assert(I != Symbols.end() && "Symbol not found"); assert(!I->second.getFlags().isLazy() && I->second.getFlags().isMaterializing() && "Symbol should be materializing"); assert(I->second.getAddress() == 0 && "Symbol has already been resolved"); assert((Sym.getFlags() & ~JITSymbolFlags::Weak) == (JITSymbolFlags::stripTransientFlags(I->second.getFlags()) & ~JITSymbolFlags::Weak) && "Resolved flags should match the declared flags"); // Once resolved, symbols can never be weak. JITSymbolFlags ResolvedFlags = Sym.getFlags(); ResolvedFlags &= ~JITSymbolFlags::Weak; ResolvedFlags |= JITSymbolFlags::Materializing; I->second = JITEvaluatedSymbol(Sym.getAddress(), ResolvedFlags); auto &MI = MaterializingInfos[Name]; for (auto &Q : MI.PendingQueries) { Q->resolve(Name, Sym); if (Q->isFullyResolved()) FullyResolvedQueries.insert(Q); } } return FullyResolvedQueries; }); for (auto &Q : FullyResolvedQueries) { assert(Q->isFullyResolved() && "Q not fully resolved"); Q->handleFullyResolved(); } } void JITDylib::emit(const SymbolFlagsMap &Emitted) { auto FullyReadyQueries = ES.runSessionLocked([&, this]() { AsynchronousSymbolQuerySet ReadyQueries; for (const auto &KV : Emitted) { const auto &Name = KV.first; auto MII = MaterializingInfos.find(Name); assert(MII != MaterializingInfos.end() && "Missing MaterializingInfo entry"); auto &MI = MII->second; // For each dependant, transfer this node's emitted dependencies to // it. If the dependant node is ready (i.e. has no unemitted // dependencies) then notify any pending queries. for (auto &KV : MI.Dependants) { auto &DependantJD = *KV.first; for (auto &DependantName : KV.second) { auto DependantMII = DependantJD.MaterializingInfos.find(DependantName); assert(DependantMII != DependantJD.MaterializingInfos.end() && "Dependant should have MaterializingInfo"); auto &DependantMI = DependantMII->second; // Remove the dependant's dependency on this node. assert(DependantMI.UnemittedDependencies[this].count(Name) && "Dependant does not count this symbol as a dependency?"); DependantMI.UnemittedDependencies[this].erase(Name); if (DependantMI.UnemittedDependencies[this].empty()) DependantMI.UnemittedDependencies.erase(this); // Transfer unemitted dependencies from this node to the dependant. DependantJD.transferEmittedNodeDependencies(DependantMI, DependantName, MI); // If the dependant is emitted and this node was the last of its // unemitted dependencies then the dependant node is now ready, so // notify any pending queries on the dependant node. if (DependantMI.IsEmitted && DependantMI.UnemittedDependencies.empty()) { assert(DependantMI.Dependants.empty() && "Dependants should be empty by now"); for (auto &Q : DependantMI.PendingQueries) { Q->notifySymbolReady(); if (Q->isFullyReady()) ReadyQueries.insert(Q); Q->removeQueryDependence(DependantJD, DependantName); } // Since this dependant is now ready, we erase its MaterializingInfo // and update its materializing state. assert(DependantJD.Symbols.count(DependantName) && "Dependant has no entry in the Symbols table"); auto &DependantSym = DependantJD.Symbols[DependantName]; DependantSym.setFlags(DependantSym.getFlags() & ~JITSymbolFlags::Materializing); DependantJD.MaterializingInfos.erase(DependantMII); } } } MI.Dependants.clear(); MI.IsEmitted = true; if (MI.UnemittedDependencies.empty()) { for (auto &Q : MI.PendingQueries) { Q->notifySymbolReady(); if (Q->isFullyReady()) ReadyQueries.insert(Q); Q->removeQueryDependence(*this, Name); } assert(Symbols.count(Name) && "Symbol has no entry in the Symbols table"); auto &Sym = Symbols[Name]; Sym.setFlags(Sym.getFlags() & ~JITSymbolFlags::Materializing); MaterializingInfos.erase(MII); } } return ReadyQueries; }); for (auto &Q : FullyReadyQueries) { assert(Q->isFullyReady() && "Q is not fully ready"); Q->handleFullyReady(); } } void JITDylib::notifyFailed(const SymbolNameSet &FailedSymbols) { // FIXME: This should fail any transitively dependant symbols too. auto FailedQueriesToNotify = ES.runSessionLocked([&, this]() { AsynchronousSymbolQuerySet FailedQueries; for (auto &Name : FailedSymbols) { auto I = Symbols.find(Name); assert(I != Symbols.end() && "Symbol not present in this JITDylib"); Symbols.erase(I); auto MII = MaterializingInfos.find(Name); // If we have not created a MaterializingInfo for this symbol yet then // there is nobody to notify. if (MII == MaterializingInfos.end()) continue; // Copy all the queries to the FailedQueries list, then abandon them. // This has to be a copy, and the copy has to come before the abandon // operation: Each Q.detach() call will reach back into this // PendingQueries list to remove Q. for (auto &Q : MII->second.PendingQueries) FailedQueries.insert(Q); for (auto &Q : FailedQueries) Q->detach(); assert(MII->second.PendingQueries.empty() && "Queries remain after symbol was failed"); MaterializingInfos.erase(MII); } return FailedQueries; }); for (auto &Q : FailedQueriesToNotify) Q->handleFailed(make_error(FailedSymbols)); } void JITDylib::setSearchOrder(JITDylibSearchList NewSearchOrder, bool SearchThisJITDylibFirst, bool MatchNonExportedInThisDylib) { if (SearchThisJITDylibFirst && NewSearchOrder.front().first != this) NewSearchOrder.insert(NewSearchOrder.begin(), {this, MatchNonExportedInThisDylib}); ES.runSessionLocked([&]() { SearchOrder = std::move(NewSearchOrder); }); } void JITDylib::addToSearchOrder(JITDylib &JD, bool MatchNonExported) { ES.runSessionLocked([&]() { SearchOrder.push_back({&JD, MatchNonExported}); }); } void JITDylib::replaceInSearchOrder(JITDylib &OldJD, JITDylib &NewJD, bool MatchNonExported) { ES.runSessionLocked([&]() { auto I = std::find_if(SearchOrder.begin(), SearchOrder.end(), [&](const JITDylibSearchList::value_type &KV) { return KV.first == &OldJD; }); if (I != SearchOrder.end()) *I = {&NewJD, MatchNonExported}; }); } void JITDylib::removeFromSearchOrder(JITDylib &JD) { ES.runSessionLocked([&]() { auto I = std::find_if(SearchOrder.begin(), SearchOrder.end(), [&](const JITDylibSearchList::value_type &KV) { return KV.first == &JD; }); if (I != SearchOrder.end()) SearchOrder.erase(I); }); } Error JITDylib::remove(const SymbolNameSet &Names) { return ES.runSessionLocked([&]() -> Error { using SymbolMaterializerItrPair = std::pair; std::vector SymbolsToRemove; SymbolNameSet Missing; SymbolNameSet Materializing; for (auto &Name : Names) { auto I = Symbols.find(Name); // Note symbol missing. if (I == Symbols.end()) { Missing.insert(Name); continue; } // Note symbol materializing. if (I->second.getFlags().isMaterializing()) { Materializing.insert(Name); continue; } auto UMII = I->second.getFlags().isLazy() ? UnmaterializedInfos.find(Name) : UnmaterializedInfos.end(); SymbolsToRemove.push_back(std::make_pair(I, UMII)); } // If any of the symbols are not defined, return an error. if (!Missing.empty()) return make_error(std::move(Missing)); // If any of the symbols are currently materializing, return an error. if (!Materializing.empty()) return make_error(std::move(Materializing)); // Remove the symbols. for (auto &SymbolMaterializerItrPair : SymbolsToRemove) { auto UMII = SymbolMaterializerItrPair.second; // If there is a materializer attached, call discard. if (UMII != UnmaterializedInfos.end()) { UMII->second->MU->doDiscard(*this, UMII->first); UnmaterializedInfos.erase(UMII); } auto SymI = SymbolMaterializerItrPair.first; Symbols.erase(SymI); } return Error::success(); }); } SymbolFlagsMap JITDylib::lookupFlags(const SymbolNameSet &Names) { return ES.runSessionLocked([&, this]() { SymbolFlagsMap Result; auto Unresolved = lookupFlagsImpl(Result, Names); if (DefGenerator && !Unresolved.empty()) { auto NewDefs = DefGenerator(*this, Unresolved); if (!NewDefs.empty()) { auto Unresolved2 = lookupFlagsImpl(Result, NewDefs); (void)Unresolved2; assert(Unresolved2.empty() && "All fallback defs should have been found by lookupFlagsImpl"); } }; return Result; }); } SymbolNameSet JITDylib::lookupFlagsImpl(SymbolFlagsMap &Flags, const SymbolNameSet &Names) { SymbolNameSet Unresolved; for (auto &Name : Names) { auto I = Symbols.find(Name); if (I == Symbols.end()) { Unresolved.insert(Name); continue; } assert(!Flags.count(Name) && "Symbol already present in Flags map"); Flags[Name] = JITSymbolFlags::stripTransientFlags(I->second.getFlags()); } return Unresolved; } void JITDylib::lodgeQuery(std::shared_ptr &Q, SymbolNameSet &Unresolved, bool MatchNonExported, MaterializationUnitList &MUs) { assert(Q && "Query can not be null"); lodgeQueryImpl(Q, Unresolved, MatchNonExported, MUs); if (DefGenerator && !Unresolved.empty()) { auto NewDefs = DefGenerator(*this, Unresolved); if (!NewDefs.empty()) { for (auto &D : NewDefs) Unresolved.erase(D); lodgeQueryImpl(Q, NewDefs, MatchNonExported, MUs); assert(NewDefs.empty() && "All fallback defs should have been found by lookupImpl"); } } } void JITDylib::lodgeQueryImpl( std::shared_ptr &Q, SymbolNameSet &Unresolved, bool MatchNonExported, std::vector> &MUs) { std::vector ToRemove; for (auto Name : Unresolved) { // Search for the name in Symbols. Skip it if not found. auto SymI = Symbols.find(Name); if (SymI == Symbols.end()) continue; // If this is a non exported symbol and we're skipping those then skip it. if (!SymI->second.getFlags().isExported() && !MatchNonExported) continue; // If we matched against Name in JD, mark it to be removed from the Unresolved // set. ToRemove.push_back(Name); // If the symbol has an address then resolve it. if (SymI->second.getAddress() != 0) Q->resolve(Name, SymI->second); // If the symbol is lazy, get the MaterialiaztionUnit for it. if (SymI->second.getFlags().isLazy()) { assert(SymI->second.getAddress() == 0 && "Lazy symbol should not have a resolved address"); assert(!SymI->second.getFlags().isMaterializing() && "Materializing and lazy should not both be set"); auto UMII = UnmaterializedInfos.find(Name); assert(UMII != UnmaterializedInfos.end() && "Lazy symbol should have UnmaterializedInfo"); auto MU = std::move(UMII->second->MU); assert(MU != nullptr && "Materializer should not be null"); // Move all symbols associated with this MaterializationUnit into // materializing state. for (auto &KV : MU->getSymbols()) { auto SymK = Symbols.find(KV.first); auto Flags = SymK->second.getFlags(); Flags &= ~JITSymbolFlags::Lazy; Flags |= JITSymbolFlags::Materializing; SymK->second.setFlags(Flags); UnmaterializedInfos.erase(KV.first); } // Add MU to the list of MaterializationUnits to be materialized. MUs.push_back(std::move(MU)); } else if (!SymI->second.getFlags().isMaterializing()) { // The symbol is neither lazy nor materializing, so it must be // ready. Notify the query and continue. Q->notifySymbolReady(); continue; } // Add the query to the PendingQueries list. assert(SymI->second.getFlags().isMaterializing() && "By this line the symbol should be materializing"); auto &MI = MaterializingInfos[Name]; MI.PendingQueries.push_back(Q); Q->addQueryDependence(*this, Name); } // Remove any symbols that we found. for (auto &Name : ToRemove) Unresolved.erase(Name); } SymbolNameSet JITDylib::legacyLookup(std::shared_ptr Q, SymbolNameSet Names) { assert(Q && "Query can not be null"); ES.runOutstandingMUs(); LookupImplActionFlags ActionFlags = None; std::vector> MUs; SymbolNameSet Unresolved = std::move(Names); ES.runSessionLocked([&, this]() { ActionFlags = lookupImpl(Q, MUs, Unresolved); if (DefGenerator && !Unresolved.empty()) { assert(ActionFlags == None && "ActionFlags set but unresolved symbols remain?"); auto NewDefs = DefGenerator(*this, Unresolved); if (!NewDefs.empty()) { for (auto &D : NewDefs) Unresolved.erase(D); ActionFlags = lookupImpl(Q, MUs, NewDefs); assert(NewDefs.empty() && "All fallback defs should have been found by lookupImpl"); } } }); assert((MUs.empty() || ActionFlags == None) && "If action flags are set, there should be no work to do (so no MUs)"); if (ActionFlags & NotifyFullyResolved) Q->handleFullyResolved(); if (ActionFlags & NotifyFullyReady) Q->handleFullyReady(); // FIXME: Swap back to the old code below once RuntimeDyld works with // callbacks from asynchronous queries. // Add MUs to the OutstandingMUs list. { std::lock_guard Lock(ES.OutstandingMUsMutex); for (auto &MU : MUs) ES.OutstandingMUs.push_back(make_pair(this, std::move(MU))); } ES.runOutstandingMUs(); // Dispatch any required MaterializationUnits for materialization. // for (auto &MU : MUs) // ES.dispatchMaterialization(*this, std::move(MU)); return Unresolved; } JITDylib::LookupImplActionFlags JITDylib::lookupImpl(std::shared_ptr &Q, std::vector> &MUs, SymbolNameSet &Unresolved) { LookupImplActionFlags ActionFlags = None; std::vector ToRemove; for (auto Name : Unresolved) { // Search for the name in Symbols. Skip it if not found. auto SymI = Symbols.find(Name); if (SymI == Symbols.end()) continue; // If we found Name, mark it to be removed from the Unresolved set. ToRemove.push_back(Name); // If the symbol has an address then resolve it. if (SymI->second.getAddress() != 0) { Q->resolve(Name, SymI->second); if (Q->isFullyResolved()) ActionFlags |= NotifyFullyResolved; } // If the symbol is lazy, get the MaterialiaztionUnit for it. if (SymI->second.getFlags().isLazy()) { assert(SymI->second.getAddress() == 0 && "Lazy symbol should not have a resolved address"); assert(!SymI->second.getFlags().isMaterializing() && "Materializing and lazy should not both be set"); auto UMII = UnmaterializedInfos.find(Name); assert(UMII != UnmaterializedInfos.end() && "Lazy symbol should have UnmaterializedInfo"); auto MU = std::move(UMII->second->MU); assert(MU != nullptr && "Materializer should not be null"); // Kick all symbols associated with this MaterializationUnit into // materializing state. for (auto &KV : MU->getSymbols()) { auto SymK = Symbols.find(KV.first); auto Flags = SymK->second.getFlags(); Flags &= ~JITSymbolFlags::Lazy; Flags |= JITSymbolFlags::Materializing; SymK->second.setFlags(Flags); UnmaterializedInfos.erase(KV.first); } // Add MU to the list of MaterializationUnits to be materialized. MUs.push_back(std::move(MU)); } else if (!SymI->second.getFlags().isMaterializing()) { // The symbol is neither lazy nor materializing, so it must be ready. // Notify the query and continue. Q->notifySymbolReady(); if (Q->isFullyReady()) ActionFlags |= NotifyFullyReady; continue; } // Add the query to the PendingQueries list. assert(SymI->second.getFlags().isMaterializing() && "By this line the symbol should be materializing"); auto &MI = MaterializingInfos[Name]; MI.PendingQueries.push_back(Q); Q->addQueryDependence(*this, Name); } // Remove any marked symbols from the Unresolved set. for (auto &Name : ToRemove) Unresolved.erase(Name); return ActionFlags; } void JITDylib::dump(raw_ostream &OS) { ES.runSessionLocked([&, this]() { OS << "JITDylib \"" << JITDylibName << "\" (ES: " << format("0x%016" PRIx64, reinterpret_cast(&ES)) << "):\n" << "Search order: ["; for (auto &KV : SearchOrder) OS << " (\"" << KV.first->getName() << "\", " << (KV.second ? "all" : "exported only") << ")"; OS << " ]\n" << "Symbol table:\n"; for (auto &KV : Symbols) { OS << " \"" << *KV.first << "\": "; if (auto Addr = KV.second.getAddress()) OS << format("0x%016" PRIx64, Addr) << ", " << KV.second.getFlags(); else OS << ""; if (KV.second.getFlags().isLazy() || KV.second.getFlags().isMaterializing()) { OS << " ("; if (KV.second.getFlags().isLazy()) { auto I = UnmaterializedInfos.find(KV.first); assert(I != UnmaterializedInfos.end() && "Lazy symbol should have UnmaterializedInfo"); OS << " Lazy (MU=" << I->second->MU.get() << ")"; } if (KV.second.getFlags().isMaterializing()) OS << " Materializing"; OS << ", " << KV.second.getFlags() << " )\n"; } else OS << "\n"; } if (!MaterializingInfos.empty()) OS << " MaterializingInfos entries:\n"; for (auto &KV : MaterializingInfos) { OS << " \"" << *KV.first << "\":\n" << " IsEmitted = " << (KV.second.IsEmitted ? "true" : "false") << "\n" << " " << KV.second.PendingQueries.size() << " pending queries: { "; for (auto &Q : KV.second.PendingQueries) OS << Q.get() << " "; OS << "}\n Dependants:\n"; for (auto &KV2 : KV.second.Dependants) OS << " " << KV2.first->getName() << ": " << KV2.second << "\n"; OS << " Unemitted Dependencies:\n"; for (auto &KV2 : KV.second.UnemittedDependencies) OS << " " << KV2.first->getName() << ": " << KV2.second << "\n"; } }); } JITDylib::JITDylib(ExecutionSession &ES, std::string Name) : ES(ES), JITDylibName(std::move(Name)) { SearchOrder.push_back({this, true}); } Error JITDylib::defineImpl(MaterializationUnit &MU) { SymbolNameSet Duplicates; SymbolNameSet MUDefsOverridden; struct ExistingDefOverriddenEntry { SymbolMap::iterator ExistingDefItr; JITSymbolFlags NewFlags; }; std::vector ExistingDefsOverridden; for (auto &KV : MU.getSymbols()) { assert(!KV.second.isLazy() && "Lazy flag should be managed internally."); assert(!KV.second.isMaterializing() && "Materializing flags should be managed internally."); SymbolMap::iterator EntryItr; bool Added; auto NewFlags = KV.second; NewFlags |= JITSymbolFlags::Lazy; std::tie(EntryItr, Added) = Symbols.insert( std::make_pair(KV.first, JITEvaluatedSymbol(0, NewFlags))); if (!Added) { if (KV.second.isStrong()) { if (EntryItr->second.getFlags().isStrong() || (EntryItr->second.getFlags() & JITSymbolFlags::Materializing)) Duplicates.insert(KV.first); else ExistingDefsOverridden.push_back({EntryItr, NewFlags}); } else MUDefsOverridden.insert(KV.first); } } if (!Duplicates.empty()) { // We need to remove the symbols we added. for (auto &KV : MU.getSymbols()) { if (Duplicates.count(KV.first)) continue; bool Found = false; for (const auto &EDO : ExistingDefsOverridden) if (EDO.ExistingDefItr->first == KV.first) Found = true; if (!Found) Symbols.erase(KV.first); } // FIXME: Return all duplicates. return make_error(**Duplicates.begin()); } // Update flags on existing defs and call discard on their materializers. for (auto &EDO : ExistingDefsOverridden) { assert(EDO.ExistingDefItr->second.getFlags().isLazy() && !EDO.ExistingDefItr->second.getFlags().isMaterializing() && "Overridden existing def should be in the Lazy state"); EDO.ExistingDefItr->second.setFlags(EDO.NewFlags); auto UMII = UnmaterializedInfos.find(EDO.ExistingDefItr->first); assert(UMII != UnmaterializedInfos.end() && "Overridden existing def should have an UnmaterializedInfo"); UMII->second->MU->doDiscard(*this, EDO.ExistingDefItr->first); } // Discard overridden symbols povided by MU. for (auto &Sym : MUDefsOverridden) MU.doDiscard(*this, Sym); return Error::success(); } void JITDylib::detachQueryHelper(AsynchronousSymbolQuery &Q, const SymbolNameSet &QuerySymbols) { for (auto &QuerySymbol : QuerySymbols) { assert(MaterializingInfos.count(QuerySymbol) && "QuerySymbol does not have MaterializingInfo"); auto &MI = MaterializingInfos[QuerySymbol]; auto IdenticalQuery = [&](const std::shared_ptr &R) { return R.get() == &Q; }; auto I = std::find_if(MI.PendingQueries.begin(), MI.PendingQueries.end(), IdenticalQuery); assert(I != MI.PendingQueries.end() && "Query Q should be in the PendingQueries list for QuerySymbol"); MI.PendingQueries.erase(I); } } void JITDylib::transferEmittedNodeDependencies( MaterializingInfo &DependantMI, const SymbolStringPtr &DependantName, MaterializingInfo &EmittedMI) { for (auto &KV : EmittedMI.UnemittedDependencies) { auto &DependencyJD = *KV.first; SymbolNameSet *UnemittedDependenciesOnDependencyJD = nullptr; for (auto &DependencyName : KV.second) { auto &DependencyMI = DependencyJD.MaterializingInfos[DependencyName]; // Do not add self dependencies. if (&DependencyMI == &DependantMI) continue; // If we haven't looked up the dependencies for DependencyJD yet, do it // now and cache the result. if (!UnemittedDependenciesOnDependencyJD) UnemittedDependenciesOnDependencyJD = &DependantMI.UnemittedDependencies[&DependencyJD]; DependencyMI.Dependants[this].insert(DependantName); UnemittedDependenciesOnDependencyJD->insert(DependencyName); } } } ExecutionSession::ExecutionSession(std::shared_ptr SSP) : SSP(SSP ? std::move(SSP) : std::make_shared()) { // Construct the main dylib. JDs.push_back(std::unique_ptr(new JITDylib(*this, "
"))); } JITDylib &ExecutionSession::getMainJITDylib() { return runSessionLocked([this]() -> JITDylib & { return *JDs.front(); }); } JITDylib &ExecutionSession::createJITDylib(std::string Name, bool AddToMainDylibSearchOrder) { return runSessionLocked([&, this]() -> JITDylib & { JDs.push_back( std::unique_ptr(new JITDylib(*this, std::move(Name)))); if (AddToMainDylibSearchOrder) JDs.front()->addToSearchOrder(*JDs.back()); return *JDs.back(); }); } void ExecutionSession::legacyFailQuery(AsynchronousSymbolQuery &Q, Error Err) { assert(!!Err && "Error should be in failure state"); bool SendErrorToQuery; runSessionLocked([&]() { Q.detach(); SendErrorToQuery = Q.canStillFail(); }); if (SendErrorToQuery) Q.handleFailed(std::move(Err)); else reportError(std::move(Err)); } Expected ExecutionSession::legacyLookup( LegacyAsyncLookupFunction AsyncLookup, SymbolNameSet Names, bool WaitUntilReady, RegisterDependenciesFunction RegisterDependencies) { #if LLVM_ENABLE_THREADS // In the threaded case we use promises to return the results. std::promise PromisedResult; std::mutex ErrMutex; Error ResolutionError = Error::success(); std::promise PromisedReady; Error ReadyError = Error::success(); auto OnResolve = [&](Expected R) { if (R) PromisedResult.set_value(std::move(*R)); else { { ErrorAsOutParameter _(&ResolutionError); std::lock_guard Lock(ErrMutex); ResolutionError = R.takeError(); } PromisedResult.set_value(SymbolMap()); } }; std::function OnReady; if (WaitUntilReady) { OnReady = [&](Error Err) { if (Err) { ErrorAsOutParameter _(&ReadyError); std::lock_guard Lock(ErrMutex); ReadyError = std::move(Err); } PromisedReady.set_value(); }; } else { OnReady = [&](Error Err) { if (Err) reportError(std::move(Err)); }; } #else SymbolMap Result; Error ResolutionError = Error::success(); Error ReadyError = Error::success(); auto OnResolve = [&](Expected R) { ErrorAsOutParameter _(&ResolutionError); if (R) Result = std::move(*R); else ResolutionError = R.takeError(); }; std::function OnReady; if (WaitUntilReady) { OnReady = [&](Error Err) { ErrorAsOutParameter _(&ReadyError); if (Err) ReadyError = std::move(Err); }; } else { OnReady = [&](Error Err) { if (Err) reportError(std::move(Err)); }; } #endif auto Query = std::make_shared( Names, std::move(OnResolve), std::move(OnReady)); // FIXME: This should be run session locked along with the registration code // and error reporting below. SymbolNameSet UnresolvedSymbols = AsyncLookup(Query, std::move(Names)); // If the query was lodged successfully then register the dependencies, // otherwise fail it with an error. if (UnresolvedSymbols.empty()) RegisterDependencies(Query->QueryRegistrations); else { bool DeliverError = runSessionLocked([&]() { Query->detach(); return Query->canStillFail(); }); auto Err = make_error(std::move(UnresolvedSymbols)); if (DeliverError) Query->handleFailed(std::move(Err)); else reportError(std::move(Err)); } #if LLVM_ENABLE_THREADS auto ResultFuture = PromisedResult.get_future(); auto Result = ResultFuture.get(); { std::lock_guard Lock(ErrMutex); if (ResolutionError) { // ReadyError will never be assigned. Consume the success value. cantFail(std::move(ReadyError)); return std::move(ResolutionError); } } if (WaitUntilReady) { auto ReadyFuture = PromisedReady.get_future(); ReadyFuture.get(); { std::lock_guard Lock(ErrMutex); if (ReadyError) return std::move(ReadyError); } } else cantFail(std::move(ReadyError)); return std::move(Result); #else if (ResolutionError) { // ReadyError will never be assigned. Consume the success value. cantFail(std::move(ReadyError)); return std::move(ResolutionError); } if (ReadyError) return std::move(ReadyError); return Result; #endif } void ExecutionSession::lookup( const JITDylibSearchList &SearchOrder, SymbolNameSet Symbols, SymbolsResolvedCallback OnResolve, SymbolsReadyCallback OnReady, RegisterDependenciesFunction RegisterDependencies) { // lookup can be re-entered recursively if running on a single thread. Run any // outstanding MUs in case this query depends on them, otherwise this lookup // will starve waiting for a result from an MU that is stuck in the queue. runOutstandingMUs(); auto Unresolved = std::move(Symbols); std::map CollectedMUsMap; auto Q = std::make_shared( Unresolved, std::move(OnResolve), std::move(OnReady)); bool QueryIsFullyResolved = false; bool QueryIsFullyReady = false; bool QueryFailed = false; runSessionLocked([&]() { for (auto &KV : SearchOrder) { assert(KV.first && "JITDylibList entries must not be null"); assert(!CollectedMUsMap.count(KV.first) && "JITDylibList should not contain duplicate entries"); auto &JD = *KV.first; auto MatchNonExported = KV.second; JD.lodgeQuery(Q, Unresolved, MatchNonExported, CollectedMUsMap[&JD]); } if (Unresolved.empty()) { // Query lodged successfully. // Record whether this query is fully ready / resolved. We will use // this to call handleFullyResolved/handleFullyReady outside the session // lock. QueryIsFullyResolved = Q->isFullyResolved(); QueryIsFullyReady = Q->isFullyReady(); // Call the register dependencies function. if (RegisterDependencies && !Q->QueryRegistrations.empty()) RegisterDependencies(Q->QueryRegistrations); } else { // Query failed due to unresolved symbols. QueryFailed = true; // Disconnect the query from its dependencies. Q->detach(); // Replace the MUs. for (auto &KV : CollectedMUsMap) for (auto &MU : KV.second) KV.first->replace(std::move(MU)); } }); if (QueryFailed) { Q->handleFailed(make_error(std::move(Unresolved))); return; } else { if (QueryIsFullyResolved) Q->handleFullyResolved(); if (QueryIsFullyReady) Q->handleFullyReady(); } // Move the MUs to the OutstandingMUs list, then materialize. { std::lock_guard Lock(OutstandingMUsMutex); for (auto &KV : CollectedMUsMap) for (auto &MU : KV.second) OutstandingMUs.push_back(std::make_pair(KV.first, std::move(MU))); } runOutstandingMUs(); } Expected ExecutionSession::lookup( const JITDylibSearchList &SearchOrder, const SymbolNameSet &Symbols, RegisterDependenciesFunction RegisterDependencies, bool WaitUntilReady) { #if LLVM_ENABLE_THREADS // In the threaded case we use promises to return the results. std::promise PromisedResult; std::mutex ErrMutex; Error ResolutionError = Error::success(); std::promise PromisedReady; Error ReadyError = Error::success(); auto OnResolve = [&](Expected R) { if (R) PromisedResult.set_value(std::move(*R)); else { { ErrorAsOutParameter _(&ResolutionError); std::lock_guard Lock(ErrMutex); ResolutionError = R.takeError(); } PromisedResult.set_value(SymbolMap()); } }; std::function OnReady; if (WaitUntilReady) { OnReady = [&](Error Err) { if (Err) { ErrorAsOutParameter _(&ReadyError); std::lock_guard Lock(ErrMutex); ReadyError = std::move(Err); } PromisedReady.set_value(); }; } else { OnReady = [&](Error Err) { if (Err) reportError(std::move(Err)); }; } #else SymbolMap Result; Error ResolutionError = Error::success(); Error ReadyError = Error::success(); auto OnResolve = [&](Expected R) { ErrorAsOutParameter _(&ResolutionError); if (R) Result = std::move(*R); else ResolutionError = R.takeError(); }; std::function OnReady; if (WaitUntilReady) { OnReady = [&](Error Err) { ErrorAsOutParameter _(&ReadyError); if (Err) ReadyError = std::move(Err); }; } else { OnReady = [&](Error Err) { if (Err) reportError(std::move(Err)); }; } #endif // Perform the asynchronous lookup. lookup(SearchOrder, Symbols, OnResolve, OnReady, RegisterDependencies); #if LLVM_ENABLE_THREADS auto ResultFuture = PromisedResult.get_future(); auto Result = ResultFuture.get(); { std::lock_guard Lock(ErrMutex); if (ResolutionError) { // ReadyError will never be assigned. Consume the success value. cantFail(std::move(ReadyError)); return std::move(ResolutionError); } } if (WaitUntilReady) { auto ReadyFuture = PromisedReady.get_future(); ReadyFuture.get(); { std::lock_guard Lock(ErrMutex); if (ReadyError) return std::move(ReadyError); } } else cantFail(std::move(ReadyError)); return std::move(Result); #else if (ResolutionError) { // ReadyError will never be assigned. Consume the success value. cantFail(std::move(ReadyError)); return std::move(ResolutionError); } if (ReadyError) return std::move(ReadyError); return Result; #endif } Expected ExecutionSession::lookup(const JITDylibSearchList &SearchOrder, SymbolStringPtr Name) { SymbolNameSet Names({Name}); if (auto ResultMap = lookup(SearchOrder, std::move(Names), NoDependenciesToRegister, true)) { assert(ResultMap->size() == 1 && "Unexpected number of results"); assert(ResultMap->count(Name) && "Missing result for symbol"); return std::move(ResultMap->begin()->second); } else return ResultMap.takeError(); } Expected ExecutionSession::lookup(ArrayRef SearchOrder, SymbolStringPtr Name) { SymbolNameSet Names({Name}); JITDylibSearchList FullSearchOrder; FullSearchOrder.reserve(SearchOrder.size()); for (auto *JD : SearchOrder) FullSearchOrder.push_back({JD, false}); return lookup(FullSearchOrder, Name); } Expected ExecutionSession::lookup(ArrayRef SearchOrder, StringRef Name) { return lookup(SearchOrder, intern(Name)); } void ExecutionSession::dump(raw_ostream &OS) { runSessionLocked([this, &OS]() { for (auto &JD : JDs) JD->dump(OS); }); } void ExecutionSession::runOutstandingMUs() { while (1) { std::pair> JITDylibAndMU; { std::lock_guard Lock(OutstandingMUsMutex); if (!OutstandingMUs.empty()) { JITDylibAndMU = std::move(OutstandingMUs.back()); OutstandingMUs.pop_back(); } } if (JITDylibAndMU.first) { assert(JITDylibAndMU.second && "JITDylib, but no MU?"); dispatchMaterialization(*JITDylibAndMU.first, std::move(JITDylibAndMU.second)); } else break; } } MangleAndInterner::MangleAndInterner(ExecutionSession &ES, const DataLayout &DL) : ES(ES), DL(DL) {} SymbolStringPtr MangleAndInterner::operator()(StringRef Name) { std::string MangledName; { raw_string_ostream MangledNameStream(MangledName); Mangler::getNameWithPrefix(MangledNameStream, Name, DL); } return ES.intern(MangledName); } } // End namespace orc. } // End namespace llvm.