//===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// This pass optimizes atomic operations by using a single lane of a wavefront /// to perform the atomic operation, thus reducing contention on that memory /// location. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUSubtarget.h" #include "llvm/Analysis/LegacyDivergenceAnalysis.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstVisitor.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #define DEBUG_TYPE "amdgpu-atomic-optimizer" using namespace llvm; namespace { enum DPP_CTRL { DPP_ROW_SR1 = 0x111, DPP_ROW_SR2 = 0x112, DPP_ROW_SR4 = 0x114, DPP_ROW_SR8 = 0x118, DPP_WF_SR1 = 0x138, DPP_ROW_BCAST15 = 0x142, DPP_ROW_BCAST31 = 0x143 }; struct ReplacementInfo { Instruction *I; Instruction::BinaryOps Op; unsigned ValIdx; bool ValDivergent; }; class AMDGPUAtomicOptimizer : public FunctionPass, public InstVisitor { private: SmallVector ToReplace; const LegacyDivergenceAnalysis *DA; const DataLayout *DL; DominatorTree *DT; bool HasDPP; bool IsPixelShader; void optimizeAtomic(Instruction &I, Instruction::BinaryOps Op, unsigned ValIdx, bool ValDivergent) const; void setConvergent(CallInst *const CI) const; public: static char ID; AMDGPUAtomicOptimizer() : FunctionPass(ID) {} bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addPreserved(); AU.addRequired(); AU.addRequired(); } void visitAtomicRMWInst(AtomicRMWInst &I); void visitIntrinsicInst(IntrinsicInst &I); }; } // namespace char AMDGPUAtomicOptimizer::ID = 0; char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID; bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) { if (skipFunction(F)) { return false; } DA = &getAnalysis(); DL = &F.getParent()->getDataLayout(); DominatorTreeWrapperPass *const DTW = getAnalysisIfAvailable(); DT = DTW ? &DTW->getDomTree() : nullptr; const TargetPassConfig &TPC = getAnalysis(); const TargetMachine &TM = TPC.getTM(); const GCNSubtarget &ST = TM.getSubtarget(F); HasDPP = ST.hasDPP(); IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS; visit(F); const bool Changed = !ToReplace.empty(); for (ReplacementInfo &Info : ToReplace) { optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent); } ToReplace.clear(); return Changed; } void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) { // Early exit for unhandled address space atomic instructions. switch (I.getPointerAddressSpace()) { default: return; case AMDGPUAS::GLOBAL_ADDRESS: case AMDGPUAS::LOCAL_ADDRESS: break; } Instruction::BinaryOps Op; switch (I.getOperation()) { default: return; case AtomicRMWInst::Add: Op = Instruction::Add; break; case AtomicRMWInst::Sub: Op = Instruction::Sub; break; } const unsigned PtrIdx = 0; const unsigned ValIdx = 1; // If the pointer operand is divergent, then each lane is doing an atomic // operation on a different address, and we cannot optimize that. if (DA->isDivergent(I.getOperand(PtrIdx))) { return; } const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx)); // If the value operand is divergent, each lane is contributing a different // value to the atomic calculation. We can only optimize divergent values if // we have DPP available on our subtarget, and the atomic operation is 32 // bits. if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) { return; } // If we get here, we can optimize the atomic using a single wavefront-wide // atomic operation to do the calculation for the entire wavefront, so // remember the instruction so we can come back to it. const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; ToReplace.push_back(Info); } void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) { Instruction::BinaryOps Op; switch (I.getIntrinsicID()) { default: return; case Intrinsic::amdgcn_buffer_atomic_add: case Intrinsic::amdgcn_struct_buffer_atomic_add: case Intrinsic::amdgcn_raw_buffer_atomic_add: Op = Instruction::Add; break; case Intrinsic::amdgcn_buffer_atomic_sub: case Intrinsic::amdgcn_struct_buffer_atomic_sub: case Intrinsic::amdgcn_raw_buffer_atomic_sub: Op = Instruction::Sub; break; } const unsigned ValIdx = 0; const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx)); // If the value operand is divergent, each lane is contributing a different // value to the atomic calculation. We can only optimize divergent values if // we have DPP available on our subtarget, and the atomic operation is 32 // bits. if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) { return; } // If any of the other arguments to the intrinsic are divergent, we can't // optimize the operation. for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) { if (DA->isDivergent(I.getOperand(Idx))) { return; } } // If we get here, we can optimize the atomic using a single wavefront-wide // atomic operation to do the calculation for the entire wavefront, so // remember the instruction so we can come back to it. const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; ToReplace.push_back(Info); } void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I, Instruction::BinaryOps Op, unsigned ValIdx, bool ValDivergent) const { LLVMContext &Context = I.getContext(); // Start building just before the instruction. IRBuilder<> B(&I); // If we are in a pixel shader, because of how we have to mask out helper // lane invocations, we need to record the entry and exit BB's. BasicBlock *PixelEntryBB = nullptr; BasicBlock *PixelExitBB = nullptr; // If we're optimizing an atomic within a pixel shader, we need to wrap the // entire atomic operation in a helper-lane check. We do not want any helper // lanes that are around only for the purposes of derivatives to take part // in any cross-lane communication, and we use a branch on whether the lane is // live to do this. if (IsPixelShader) { // Record I's original position as the entry block. PixelEntryBB = I.getParent(); Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {}); Instruction *const NonHelperTerminator = SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); // Record I's new position as the exit block. PixelExitBB = I.getParent(); I.moveBefore(NonHelperTerminator); B.SetInsertPoint(&I); } Type *const Ty = I.getType(); const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty); Type *const VecTy = VectorType::get(B.getInt32Ty(), 2); // This is the value in the atomic operation we need to combine in order to // reduce the number of atomic operations. Value *const V = I.getOperand(ValIdx); // We need to know how many lanes are active within the wavefront, and we do // this by getting the exec register, which tells us all the lanes that are // active. MDNode *const RegName = llvm::MDNode::get(Context, llvm::MDString::get(Context, "exec")); Value *const Metadata = llvm::MetadataAsValue::get(Context, RegName); CallInst *const Exec = B.CreateIntrinsic(Intrinsic::read_register, {B.getInt64Ty()}, {Metadata}); setConvergent(Exec); // We need to know how many lanes are active within the wavefront that are // below us. If we counted each lane linearly starting from 0, a lane is // below us only if its associated index was less than ours. We do this by // using the mbcnt intrinsic. Value *const BitCast = B.CreateBitCast(Exec, VecTy); Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0)); Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1)); CallInst *const PartialMbcnt = B.CreateIntrinsic( Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)}); CallInst *const Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, PartialMbcnt}); Value *const MbcntCast = B.CreateIntCast(Mbcnt, Ty, false); Value *LaneOffset = nullptr; Value *NewV = nullptr; // If we have a divergent value in each lane, we need to combine the value // using DPP. if (ValDivergent) { // First we need to set all inactive invocations to 0, so that they can // correctly contribute to the final result. CallInst *const SetInactive = B.CreateIntrinsic( Intrinsic::amdgcn_set_inactive, Ty, {V, B.getIntN(TyBitWidth, 0)}); setConvergent(SetInactive); NewV = SetInactive; const unsigned Iters = 6; const unsigned DPPCtrl[Iters] = {DPP_ROW_SR1, DPP_ROW_SR2, DPP_ROW_SR4, DPP_ROW_SR8, DPP_ROW_BCAST15, DPP_ROW_BCAST31}; const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xa, 0xc}; // This loop performs an inclusive scan across the wavefront, with all lanes // active (by using the WWM intrinsic). for (unsigned Idx = 0; Idx < Iters; Idx++) { CallInst *const DPP = B.CreateIntrinsic(Intrinsic::amdgcn_mov_dpp, Ty, {NewV, B.getInt32(DPPCtrl[Idx]), B.getInt32(RowMask[Idx]), B.getInt32(0xf), B.getFalse()}); setConvergent(DPP); Value *const WWM = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, DPP); NewV = B.CreateBinOp(Op, NewV, WWM); NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV); } // NewV has returned the inclusive scan of V, but for the lane offset we // require an exclusive scan. We do this by shifting the values from the // entire wavefront right by 1, and by setting the bound_ctrl (last argument // to the intrinsic below) to true, we can guarantee that 0 will be shifted // into the 0'th invocation. CallInst *const DPP = B.CreateIntrinsic(Intrinsic::amdgcn_mov_dpp, {Ty}, {NewV, B.getInt32(DPP_WF_SR1), B.getInt32(0xf), B.getInt32(0xf), B.getTrue()}); setConvergent(DPP); LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, DPP); // Read the value from the last lane, which has accumlated the values of // each active lane in the wavefront. This will be our new value with which // we will provide to the atomic operation. if (TyBitWidth == 64) { Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty()); Value *const ExtractHi = B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty()); CallInst *const ReadLaneLo = B.CreateIntrinsic( Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)}); setConvergent(ReadLaneLo); CallInst *const ReadLaneHi = B.CreateIntrinsic( Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)}); setConvergent(ReadLaneHi); Value *const PartialInsert = B.CreateInsertElement( UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0)); Value *const Insert = B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1)); NewV = B.CreateBitCast(Insert, Ty); } else if (TyBitWidth == 32) { CallInst *const ReadLane = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {}, {NewV, B.getInt32(63)}); setConvergent(ReadLane); NewV = ReadLane; } else { llvm_unreachable("Unhandled atomic bit width"); } } else { // Get the total number of active lanes we have by using popcount. Instruction *const Ctpop = B.CreateUnaryIntrinsic(Intrinsic::ctpop, Exec); Value *const CtpopCast = B.CreateIntCast(Ctpop, Ty, false); // Calculate the new value we will be contributing to the atomic operation // for the entire wavefront. NewV = B.CreateMul(V, CtpopCast); LaneOffset = B.CreateMul(V, MbcntCast); } // We only want a single lane to enter our new control flow, and we do this // by checking if there are any active lanes below us. Only one lane will // have 0 active lanes below us, so that will be the only one to progress. Value *const Cond = B.CreateICmpEQ(MbcntCast, B.getIntN(TyBitWidth, 0)); // Store I's original basic block before we split the block. BasicBlock *const EntryBB = I.getParent(); // We need to introduce some new control flow to force a single lane to be // active. We do this by splitting I's basic block at I, and introducing the // new block such that: // entry --> single_lane -\ // \------------------> exit Instruction *const SingleLaneTerminator = SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); // Move the IR builder into single_lane next. B.SetInsertPoint(SingleLaneTerminator); // Clone the original atomic operation into single lane, replacing the // original value with our newly created one. Instruction *const NewI = I.clone(); B.Insert(NewI); NewI->setOperand(ValIdx, NewV); // Move the IR builder into exit next, and start inserting just before the // original instruction. B.SetInsertPoint(&I); // Create a PHI node to get our new atomic result into the exit block. PHINode *const PHI = B.CreatePHI(Ty, 2); PHI->addIncoming(UndefValue::get(Ty), EntryBB); PHI->addIncoming(NewI, SingleLaneTerminator->getParent()); // We need to broadcast the value who was the lowest active lane (the first // lane) to all other lanes in the wavefront. We use an intrinsic for this, // but have to handle 64-bit broadcasts with two calls to this intrinsic. Value *BroadcastI = nullptr; if (TyBitWidth == 64) { Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty()); Value *const ExtractHi = B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty()); CallInst *const ReadFirstLaneLo = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo); setConvergent(ReadFirstLaneLo); CallInst *const ReadFirstLaneHi = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi); setConvergent(ReadFirstLaneHi); Value *const PartialInsert = B.CreateInsertElement( UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0)); Value *const Insert = B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1)); BroadcastI = B.CreateBitCast(Insert, Ty); } else if (TyBitWidth == 32) { CallInst *const ReadFirstLane = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI); setConvergent(ReadFirstLane); BroadcastI = ReadFirstLane; } else { llvm_unreachable("Unhandled atomic bit width"); } // Now that we have the result of our single atomic operation, we need to // get our individual lane's slice into the result. We use the lane offset we // previously calculated combined with the atomic result value we got from the // first lane, to get our lane's index into the atomic result. Value *const Result = B.CreateBinOp(Op, BroadcastI, LaneOffset); if (IsPixelShader) { // Need a final PHI to reconverge to above the helper lane branch mask. B.SetInsertPoint(PixelExitBB->getFirstNonPHI()); PHINode *const PHI = B.CreatePHI(Ty, 2); PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB); PHI->addIncoming(Result, I.getParent()); I.replaceAllUsesWith(PHI); } else { // Replace the original atomic instruction with the new one. I.replaceAllUsesWith(Result); } // And delete the original. I.eraseFromParent(); } void AMDGPUAtomicOptimizer::setConvergent(CallInst *const CI) const { CI->addAttribute(AttributeList::FunctionIndex, Attribute::Convergent); } INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE, "AMDGPU atomic optimizations", false, false) INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE, "AMDGPU atomic optimizations", false, false) FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() { return new AMDGPUAtomicOptimizer(); }