//===-- SIOptimizeExecMaskingPreRA.cpp ------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// This pass removes redundant S_OR_B64 instructions enabling lanes in /// the exec. If two SI_END_CF (lowered as S_OR_B64) come together without any /// vector instructions between them we can only keep outer SI_END_CF, given /// that CFG is structured and exec bits of the outer end statement are always /// not less than exec bit of the inner one. /// /// This needs to be done before the RA to eliminate saved exec bits registers /// but after register coalescer to have no vector registers copies in between /// of different end cf statements. /// //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUSubtarget.h" #include "SIInstrInfo.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/MachineFunctionPass.h" using namespace llvm; #define DEBUG_TYPE "si-optimize-exec-masking-pre-ra" namespace { class SIOptimizeExecMaskingPreRA : public MachineFunctionPass { public: static char ID; public: SIOptimizeExecMaskingPreRA() : MachineFunctionPass(ID) { initializeSIOptimizeExecMaskingPreRAPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return "SI optimize exec mask operations pre-RA"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } }; } // End anonymous namespace. INITIALIZE_PASS_BEGIN(SIOptimizeExecMaskingPreRA, DEBUG_TYPE, "SI optimize exec mask operations pre-RA", false, false) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_END(SIOptimizeExecMaskingPreRA, DEBUG_TYPE, "SI optimize exec mask operations pre-RA", false, false) char SIOptimizeExecMaskingPreRA::ID = 0; char &llvm::SIOptimizeExecMaskingPreRAID = SIOptimizeExecMaskingPreRA::ID; FunctionPass *llvm::createSIOptimizeExecMaskingPreRAPass() { return new SIOptimizeExecMaskingPreRA(); } static bool isEndCF(const MachineInstr& MI, const SIRegisterInfo* TRI) { return MI.getOpcode() == AMDGPU::S_OR_B64 && MI.modifiesRegister(AMDGPU::EXEC, TRI); } static bool isFullExecCopy(const MachineInstr& MI) { return MI.isFullCopy() && MI.getOperand(1).getReg() == AMDGPU::EXEC; } static unsigned getOrNonExecReg(const MachineInstr &MI, const SIInstrInfo &TII) { auto Op = TII.getNamedOperand(MI, AMDGPU::OpName::src1); if (Op->isReg() && Op->getReg() != AMDGPU::EXEC) return Op->getReg(); Op = TII.getNamedOperand(MI, AMDGPU::OpName::src0); if (Op->isReg() && Op->getReg() != AMDGPU::EXEC) return Op->getReg(); return AMDGPU::NoRegister; } static MachineInstr* getOrExecSource(const MachineInstr &MI, const SIInstrInfo &TII, const MachineRegisterInfo &MRI) { auto SavedExec = getOrNonExecReg(MI, TII); if (SavedExec == AMDGPU::NoRegister) return nullptr; auto SaveExecInst = MRI.getUniqueVRegDef(SavedExec); if (!SaveExecInst || !isFullExecCopy(*SaveExecInst)) return nullptr; return SaveExecInst; } // Optimize sequence // %sel = V_CNDMASK_B32_e64 0, 1, %cc // %cmp = V_CMP_NE_U32 1, %1 // $vcc = S_AND_B64 $exec, %cmp // S_CBRANCH_VCC[N]Z // => // $vcc = S_ANDN2_B64 $exec, %cc // S_CBRANCH_VCC[N]Z // // It is the negation pattern inserted by DAGCombiner::visitBRCOND() in the // rebuildSetCC(). We start with S_CBRANCH to avoid exhaustive search, but // only 3 first instructions are really needed. S_AND_B64 with exec is a // required part of the pattern since V_CNDMASK_B32 writes zeroes for inactive // lanes. // // Returns %cc register on success. static unsigned optimizeVcndVcmpPair(MachineBasicBlock &MBB, const GCNSubtarget &ST, MachineRegisterInfo &MRI, LiveIntervals *LIS) { const SIRegisterInfo *TRI = ST.getRegisterInfo(); const SIInstrInfo *TII = ST.getInstrInfo(); const unsigned AndOpc = AMDGPU::S_AND_B64; const unsigned Andn2Opc = AMDGPU::S_ANDN2_B64; const unsigned CondReg = AMDGPU::VCC; const unsigned ExecReg = AMDGPU::EXEC; auto I = llvm::find_if(MBB.terminators(), [](const MachineInstr &MI) { unsigned Opc = MI.getOpcode(); return Opc == AMDGPU::S_CBRANCH_VCCZ || Opc == AMDGPU::S_CBRANCH_VCCNZ; }); if (I == MBB.terminators().end()) return AMDGPU::NoRegister; auto *And = TRI->findReachingDef(CondReg, AMDGPU::NoSubRegister, *I, MRI, LIS); if (!And || And->getOpcode() != AndOpc || !And->getOperand(1).isReg() || !And->getOperand(2).isReg()) return AMDGPU::NoRegister; MachineOperand *AndCC = &And->getOperand(1); unsigned CmpReg = AndCC->getReg(); unsigned CmpSubReg = AndCC->getSubReg(); if (CmpReg == ExecReg) { AndCC = &And->getOperand(2); CmpReg = AndCC->getReg(); CmpSubReg = AndCC->getSubReg(); } else if (And->getOperand(2).getReg() != ExecReg) { return AMDGPU::NoRegister; } auto *Cmp = TRI->findReachingDef(CmpReg, CmpSubReg, *And, MRI, LIS); if (!Cmp || !(Cmp->getOpcode() == AMDGPU::V_CMP_NE_U32_e32 || Cmp->getOpcode() == AMDGPU::V_CMP_NE_U32_e64) || Cmp->getParent() != And->getParent()) return AMDGPU::NoRegister; MachineOperand *Op1 = TII->getNamedOperand(*Cmp, AMDGPU::OpName::src0); MachineOperand *Op2 = TII->getNamedOperand(*Cmp, AMDGPU::OpName::src1); if (Op1->isImm() && Op2->isReg()) std::swap(Op1, Op2); if (!Op1->isReg() || !Op2->isImm() || Op2->getImm() != 1) return AMDGPU::NoRegister; unsigned SelReg = Op1->getReg(); auto *Sel = TRI->findReachingDef(SelReg, Op1->getSubReg(), *Cmp, MRI, LIS); if (!Sel || Sel->getOpcode() != AMDGPU::V_CNDMASK_B32_e64) return AMDGPU::NoRegister; Op1 = TII->getNamedOperand(*Sel, AMDGPU::OpName::src0); Op2 = TII->getNamedOperand(*Sel, AMDGPU::OpName::src1); MachineOperand *CC = TII->getNamedOperand(*Sel, AMDGPU::OpName::src2); if (!Op1->isImm() || !Op2->isImm() || !CC->isReg() || Op1->getImm() != 0 || Op2->getImm() != 1) return AMDGPU::NoRegister; LLVM_DEBUG(dbgs() << "Folding sequence:\n\t" << *Sel << '\t' << *Cmp << '\t' << *And); unsigned CCReg = CC->getReg(); LIS->RemoveMachineInstrFromMaps(*And); MachineInstr *Andn2 = BuildMI(MBB, *And, And->getDebugLoc(), TII->get(Andn2Opc), And->getOperand(0).getReg()) .addReg(ExecReg) .addReg(CCReg, CC->getSubReg()); And->eraseFromParent(); LIS->InsertMachineInstrInMaps(*Andn2); LLVM_DEBUG(dbgs() << "=>\n\t" << *Andn2 << '\n'); // Try to remove compare. Cmp value should not used in between of cmp // and s_and_b64 if VCC or just unused if any other register. if ((TargetRegisterInfo::isVirtualRegister(CmpReg) && MRI.use_nodbg_empty(CmpReg)) || (CmpReg == CondReg && std::none_of(std::next(Cmp->getIterator()), Andn2->getIterator(), [&](const MachineInstr &MI) { return MI.readsRegister(CondReg, TRI); }))) { LLVM_DEBUG(dbgs() << "Erasing: " << *Cmp << '\n'); LIS->RemoveMachineInstrFromMaps(*Cmp); Cmp->eraseFromParent(); // Try to remove v_cndmask_b32. if (TargetRegisterInfo::isVirtualRegister(SelReg) && MRI.use_nodbg_empty(SelReg)) { LLVM_DEBUG(dbgs() << "Erasing: " << *Sel << '\n'); LIS->RemoveMachineInstrFromMaps(*Sel); Sel->eraseFromParent(); } } return CCReg; } bool SIOptimizeExecMaskingPreRA::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; const GCNSubtarget &ST = MF.getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); const SIInstrInfo *TII = ST.getInstrInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); LiveIntervals *LIS = &getAnalysis(); DenseSet RecalcRegs({AMDGPU::EXEC_LO, AMDGPU::EXEC_HI}); bool Changed = false; for (MachineBasicBlock &MBB : MF) { if (unsigned Reg = optimizeVcndVcmpPair(MBB, ST, MRI, LIS)) { RecalcRegs.insert(Reg); RecalcRegs.insert(AMDGPU::VCC_LO); RecalcRegs.insert(AMDGPU::VCC_HI); RecalcRegs.insert(AMDGPU::SCC); Changed = true; } // Try to remove unneeded instructions before s_endpgm. if (MBB.succ_empty()) { if (MBB.empty()) continue; // Skip this if the endpgm has any implicit uses, otherwise we would need // to be careful to update / remove them. MachineInstr &Term = MBB.back(); if (Term.getOpcode() != AMDGPU::S_ENDPGM || Term.getNumOperands() != 0) continue; SmallVector Blocks({&MBB}); while (!Blocks.empty()) { auto CurBB = Blocks.pop_back_val(); auto I = CurBB->rbegin(), E = CurBB->rend(); if (I != E) { if (I->isUnconditionalBranch() || I->getOpcode() == AMDGPU::S_ENDPGM) ++I; else if (I->isBranch()) continue; } while (I != E) { if (I->isDebugInstr()) { I = std::next(I); continue; } if (I->mayStore() || I->isBarrier() || I->isCall() || I->hasUnmodeledSideEffects() || I->hasOrderedMemoryRef()) break; LLVM_DEBUG(dbgs() << "Removing no effect instruction: " << *I << '\n'); for (auto &Op : I->operands()) { if (Op.isReg()) RecalcRegs.insert(Op.getReg()); } auto Next = std::next(I); LIS->RemoveMachineInstrFromMaps(*I); I->eraseFromParent(); I = Next; Changed = true; } if (I != E) continue; // Try to ascend predecessors. for (auto *Pred : CurBB->predecessors()) { if (Pred->succ_size() == 1) Blocks.push_back(Pred); } } continue; } // Try to collapse adjacent endifs. auto Lead = MBB.begin(), E = MBB.end(); if (MBB.succ_size() != 1 || Lead == E || !isEndCF(*Lead, TRI)) continue; const MachineBasicBlock* Succ = *MBB.succ_begin(); if (!MBB.isLayoutSuccessor(Succ)) continue; auto I = std::next(Lead); for ( ; I != E; ++I) if (!TII->isSALU(*I) || I->readsRegister(AMDGPU::EXEC, TRI)) break; if (I != E) continue; const auto NextLead = Succ->begin(); if (NextLead == Succ->end() || !isEndCF(*NextLead, TRI) || !getOrExecSource(*NextLead, *TII, MRI)) continue; LLVM_DEBUG(dbgs() << "Redundant EXEC = S_OR_B64 found: " << *Lead << '\n'); auto SaveExec = getOrExecSource(*Lead, *TII, MRI); unsigned SaveExecReg = getOrNonExecReg(*Lead, *TII); for (auto &Op : Lead->operands()) { if (Op.isReg()) RecalcRegs.insert(Op.getReg()); } LIS->RemoveMachineInstrFromMaps(*Lead); Lead->eraseFromParent(); if (SaveExecReg) { LIS->removeInterval(SaveExecReg); LIS->createAndComputeVirtRegInterval(SaveExecReg); } Changed = true; // If the only use of saved exec in the removed instruction is S_AND_B64 // fold the copy now. if (!SaveExec || !SaveExec->isFullCopy()) continue; unsigned SavedExec = SaveExec->getOperand(0).getReg(); bool SafeToReplace = true; for (auto& U : MRI.use_nodbg_instructions(SavedExec)) { if (U.getParent() != SaveExec->getParent()) { SafeToReplace = false; break; } LLVM_DEBUG(dbgs() << "Redundant EXEC COPY: " << *SaveExec << '\n'); } if (SafeToReplace) { LIS->RemoveMachineInstrFromMaps(*SaveExec); SaveExec->eraseFromParent(); MRI.replaceRegWith(SavedExec, AMDGPU::EXEC); LIS->removeInterval(SavedExec); } } if (Changed) { for (auto Reg : RecalcRegs) { if (TargetRegisterInfo::isVirtualRegister(Reg)) { LIS->removeInterval(Reg); if (!MRI.reg_empty(Reg)) LIS->createAndComputeVirtRegInterval(Reg); } else { for (MCRegUnitIterator U(Reg, TRI); U.isValid(); ++U) LIS->removeRegUnit(*U); } } } return Changed; }