//===- AMDGPUBaseInfo.h - Top level definitions for AMDGPU ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H #define LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H #include "AMDGPU.h" #include "AMDKernelCodeT.h" #include "SIDefines.h" #include "llvm/ADT/StringRef.h" #include "llvm/IR/CallingConv.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/Support/AMDHSAKernelDescriptor.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetParser.h" #include #include #include namespace llvm { class Argument; class AMDGPUSubtarget; class FeatureBitset; class Function; class GCNSubtarget; class GlobalValue; class MCContext; class MCRegisterClass; class MCRegisterInfo; class MCSection; class MCSubtargetInfo; class MachineMemOperand; class Triple; namespace AMDGPU { #define GET_MIMGBaseOpcode_DECL #define GET_MIMGDim_DECL #define GET_MIMGEncoding_DECL #define GET_MIMGLZMapping_DECL #include "AMDGPUGenSearchableTables.inc" namespace IsaInfo { enum { // The closed Vulkan driver sets 96, which limits the wave count to 8 but // doesn't spill SGPRs as much as when 80 is set. FIXED_NUM_SGPRS_FOR_INIT_BUG = 96, TRAP_NUM_SGPRS = 16 }; /// Streams isa version string for given subtarget \p STI into \p Stream. void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream); /// \returns True if given subtarget \p STI supports code object version 3, /// false otherwise. bool hasCodeObjectV3(const MCSubtargetInfo *STI); /// \returns Wavefront size for given subtarget \p STI. unsigned getWavefrontSize(const MCSubtargetInfo *STI); /// \returns Local memory size in bytes for given subtarget \p STI. unsigned getLocalMemorySize(const MCSubtargetInfo *STI); /// \returns Number of execution units per compute unit for given subtarget \p /// STI. unsigned getEUsPerCU(const MCSubtargetInfo *STI); /// \returns Maximum number of work groups per compute unit for given subtarget /// \p STI and limited by given \p FlatWorkGroupSize. unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize); /// \returns Maximum number of waves per compute unit for given subtarget \p /// STI without any kind of limitation. unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI); /// \returns Maximum number of waves per compute unit for given subtarget \p /// STI and limited by given \p FlatWorkGroupSize. unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize); /// \returns Minimum number of waves per execution unit for given subtarget \p /// STI. unsigned getMinWavesPerEU(const MCSubtargetInfo *STI); /// \returns Maximum number of waves per execution unit for given subtarget \p /// STI without any kind of limitation. unsigned getMaxWavesPerEU(); /// \returns Maximum number of waves per execution unit for given subtarget \p /// STI and limited by given \p FlatWorkGroupSize. unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize); /// \returns Minimum flat work group size for given subtarget \p STI. unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI); /// \returns Maximum flat work group size for given subtarget \p STI. unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI); /// \returns Number of waves per work group for given subtarget \p STI and /// limited by given \p FlatWorkGroupSize. unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, unsigned FlatWorkGroupSize); /// \returns SGPR allocation granularity for given subtarget \p STI. unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI); /// \returns SGPR encoding granularity for given subtarget \p STI. unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI); /// \returns Total number of SGPRs for given subtarget \p STI. unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI); /// \returns Addressable number of SGPRs for given subtarget \p STI. unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI); /// \returns Minimum number of SGPRs that meets the given number of waves per /// execution unit requirement for given subtarget \p STI. unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU); /// \returns Maximum number of SGPRs that meets the given number of waves per /// execution unit requirement for given subtarget \p STI. unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, bool Addressable); /// \returns Number of extra SGPRs implicitly required by given subtarget \p /// STI when the given special registers are used. unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, bool FlatScrUsed, bool XNACKUsed); /// \returns Number of extra SGPRs implicitly required by given subtarget \p /// STI when the given special registers are used. XNACK is inferred from /// \p STI. unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, bool FlatScrUsed); /// \returns Number of SGPR blocks needed for given subtarget \p STI when /// \p NumSGPRs are used. \p NumSGPRs should already include any special /// register counts. unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs); /// \returns VGPR allocation granularity for given subtarget \p STI. unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI); /// \returns VGPR encoding granularity for given subtarget \p STI. unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI); /// \returns Total number of VGPRs for given subtarget \p STI. unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI); /// \returns Addressable number of VGPRs for given subtarget \p STI. unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI); /// \returns Minimum number of VGPRs that meets given number of waves per /// execution unit requirement for given subtarget \p STI. unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU); /// \returns Maximum number of VGPRs that meets given number of waves per /// execution unit requirement for given subtarget \p STI. unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU); /// \returns Number of VGPR blocks needed for given subtarget \p STI when /// \p NumVGPRs are used. unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs); } // end namespace IsaInfo LLVM_READONLY int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx); struct MIMGBaseOpcodeInfo { MIMGBaseOpcode BaseOpcode; bool Store; bool Atomic; bool AtomicX2; bool Sampler; bool Gather4; uint8_t NumExtraArgs; bool Gradients; bool Coordinates; bool LodOrClampOrMip; bool HasD16; }; LLVM_READONLY const MIMGBaseOpcodeInfo *getMIMGBaseOpcodeInfo(unsigned BaseOpcode); struct MIMGDimInfo { MIMGDim Dim; uint8_t NumCoords; uint8_t NumGradients; bool DA; }; LLVM_READONLY const MIMGDimInfo *getMIMGDimInfo(unsigned Dim); struct MIMGLZMappingInfo { MIMGBaseOpcode L; MIMGBaseOpcode LZ; }; LLVM_READONLY const MIMGLZMappingInfo *getMIMGLZMappingInfo(unsigned L); LLVM_READONLY int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, unsigned VDataDwords, unsigned VAddrDwords); LLVM_READONLY int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels); LLVM_READONLY int getMUBUFBaseOpcode(unsigned Opc); LLVM_READONLY int getMUBUFOpcode(unsigned BaseOpc, unsigned Dwords); LLVM_READONLY int getMUBUFDwords(unsigned Opc); LLVM_READONLY bool getMUBUFHasVAddr(unsigned Opc); LLVM_READONLY bool getMUBUFHasSrsrc(unsigned Opc); LLVM_READONLY bool getMUBUFHasSoffset(unsigned Opc); LLVM_READONLY int getMCOpcode(uint16_t Opcode, unsigned Gen); void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, const MCSubtargetInfo *STI); amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(); bool isGroupSegment(const GlobalValue *GV); bool isGlobalSegment(const GlobalValue *GV); bool isReadOnlySegment(const GlobalValue *GV); /// \returns True if constants should be emitted to .text section for given /// target triple \p TT, false otherwise. bool shouldEmitConstantsToTextSection(const Triple &TT); /// \returns Integer value requested using \p F's \p Name attribute. /// /// \returns \p Default if attribute is not present. /// /// \returns \p Default and emits error if requested value cannot be converted /// to integer. int getIntegerAttribute(const Function &F, StringRef Name, int Default); /// \returns A pair of integer values requested using \p F's \p Name attribute /// in "first[,second]" format ("second" is optional unless \p OnlyFirstRequired /// is false). /// /// \returns \p Default if attribute is not present. /// /// \returns \p Default and emits error if one of the requested values cannot be /// converted to integer, or \p OnlyFirstRequired is false and "second" value is /// not present. std::pair getIntegerPairAttribute(const Function &F, StringRef Name, std::pair Default, bool OnlyFirstRequired = false); /// Represents the counter values to wait for in an s_waitcnt instruction. /// /// Large values (including the maximum possible integer) can be used to /// represent "don't care" waits. struct Waitcnt { unsigned VmCnt = ~0u; unsigned ExpCnt = ~0u; unsigned LgkmCnt = ~0u; Waitcnt() {} Waitcnt(unsigned VmCnt, unsigned ExpCnt, unsigned LgkmCnt) : VmCnt(VmCnt), ExpCnt(ExpCnt), LgkmCnt(LgkmCnt) {} static Waitcnt allZero() { return Waitcnt(0, 0, 0); } bool dominates(const Waitcnt &Other) const { return VmCnt <= Other.VmCnt && ExpCnt <= Other.ExpCnt && LgkmCnt <= Other.LgkmCnt; } Waitcnt combined(const Waitcnt &Other) const { return Waitcnt(std::min(VmCnt, Other.VmCnt), std::min(ExpCnt, Other.ExpCnt), std::min(LgkmCnt, Other.LgkmCnt)); } }; /// \returns Vmcnt bit mask for given isa \p Version. unsigned getVmcntBitMask(const IsaVersion &Version); /// \returns Expcnt bit mask for given isa \p Version. unsigned getExpcntBitMask(const IsaVersion &Version); /// \returns Lgkmcnt bit mask for given isa \p Version. unsigned getLgkmcntBitMask(const IsaVersion &Version); /// \returns Waitcnt bit mask for given isa \p Version. unsigned getWaitcntBitMask(const IsaVersion &Version); /// \returns Decoded Vmcnt from given \p Waitcnt for given isa \p Version. unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt); /// \returns Decoded Expcnt from given \p Waitcnt for given isa \p Version. unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt); /// \returns Decoded Lgkmcnt from given \p Waitcnt for given isa \p Version. unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt); /// Decodes Vmcnt, Expcnt and Lgkmcnt from given \p Waitcnt for given isa /// \p Version, and writes decoded values into \p Vmcnt, \p Expcnt and /// \p Lgkmcnt respectively. /// /// \details \p Vmcnt, \p Expcnt and \p Lgkmcnt are decoded as follows: /// \p Vmcnt = \p Waitcnt[3:0] (pre-gfx9 only) /// \p Vmcnt = \p Waitcnt[3:0] | \p Waitcnt[15:14] (gfx9+ only) /// \p Expcnt = \p Waitcnt[6:4] /// \p Lgkmcnt = \p Waitcnt[11:8] void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt); Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded); /// \returns \p Waitcnt with encoded \p Vmcnt for given isa \p Version. unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Vmcnt); /// \returns \p Waitcnt with encoded \p Expcnt for given isa \p Version. unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Expcnt); /// \returns \p Waitcnt with encoded \p Lgkmcnt for given isa \p Version. unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, unsigned Lgkmcnt); /// Encodes \p Vmcnt, \p Expcnt and \p Lgkmcnt into Waitcnt for given isa /// \p Version. /// /// \details \p Vmcnt, \p Expcnt and \p Lgkmcnt are encoded as follows: /// Waitcnt[3:0] = \p Vmcnt (pre-gfx9 only) /// Waitcnt[3:0] = \p Vmcnt[3:0] (gfx9+ only) /// Waitcnt[6:4] = \p Expcnt /// Waitcnt[11:8] = \p Lgkmcnt /// Waitcnt[15:14] = \p Vmcnt[5:4] (gfx9+ only) /// /// \returns Waitcnt with encoded \p Vmcnt, \p Expcnt and \p Lgkmcnt for given /// isa \p Version. unsigned encodeWaitcnt(const IsaVersion &Version, unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt); unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded); unsigned getInitialPSInputAddr(const Function &F); LLVM_READNONE bool isShader(CallingConv::ID CC); LLVM_READNONE bool isCompute(CallingConv::ID CC); LLVM_READNONE bool isEntryFunctionCC(CallingConv::ID CC); // FIXME: Remove this when calling conventions cleaned up LLVM_READNONE inline bool isKernel(CallingConv::ID CC) { switch (CC) { case CallingConv::AMDGPU_KERNEL: case CallingConv::SPIR_KERNEL: return true; default: return false; } } bool hasXNACK(const MCSubtargetInfo &STI); bool hasSRAMECC(const MCSubtargetInfo &STI); bool hasMIMG_R128(const MCSubtargetInfo &STI); bool hasPackedD16(const MCSubtargetInfo &STI); bool isSI(const MCSubtargetInfo &STI); bool isCI(const MCSubtargetInfo &STI); bool isVI(const MCSubtargetInfo &STI); bool isGFX9(const MCSubtargetInfo &STI); /// Is Reg - scalar register bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI); /// Is there any intersection between registers bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI); /// If \p Reg is a pseudo reg, return the correct hardware register given /// \p STI otherwise return \p Reg. unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI); /// Convert hardware register \p Reg to a pseudo register LLVM_READNONE unsigned mc2PseudoReg(unsigned Reg); /// Can this operand also contain immediate values? bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo); /// Is this floating-point operand? bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo); /// Does this opearnd support only inlinable literals? bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo); /// Get the size in bits of a register from the register class \p RC. unsigned getRegBitWidth(unsigned RCID); /// Get the size in bits of a register from the register class \p RC. unsigned getRegBitWidth(const MCRegisterClass &RC); /// Get size of register operand unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, unsigned OpNo); LLVM_READNONE inline unsigned getOperandSize(const MCOperandInfo &OpInfo) { switch (OpInfo.OperandType) { case AMDGPU::OPERAND_REG_IMM_INT32: case AMDGPU::OPERAND_REG_IMM_FP32: case AMDGPU::OPERAND_REG_INLINE_C_INT32: case AMDGPU::OPERAND_REG_INLINE_C_FP32: return 4; case AMDGPU::OPERAND_REG_IMM_INT64: case AMDGPU::OPERAND_REG_IMM_FP64: case AMDGPU::OPERAND_REG_INLINE_C_INT64: case AMDGPU::OPERAND_REG_INLINE_C_FP64: return 8; case AMDGPU::OPERAND_REG_IMM_INT16: case AMDGPU::OPERAND_REG_IMM_FP16: case AMDGPU::OPERAND_REG_INLINE_C_INT16: case AMDGPU::OPERAND_REG_INLINE_C_FP16: case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: return 2; default: llvm_unreachable("unhandled operand type"); } } LLVM_READNONE inline unsigned getOperandSize(const MCInstrDesc &Desc, unsigned OpNo) { return getOperandSize(Desc.OpInfo[OpNo]); } /// Is this literal inlinable LLVM_READNONE bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi); LLVM_READNONE bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi); LLVM_READNONE bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi); LLVM_READNONE bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi); bool isArgPassedInSGPR(const Argument *Arg); /// \returns The encoding that will be used for \p ByteOffset in the SMRD /// offset field. int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset); /// \returns true if this offset is small enough to fit in the SMRD /// offset field. \p ByteOffset should be the offset in bytes and /// not the encoded offset. bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset); bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, const GCNSubtarget *Subtarget, uint32_t Align = 4); /// \returns true if the intrinsic is divergent bool isIntrinsicSourceOfDivergence(unsigned IntrID); } // end namespace AMDGPU } // end namespace llvm #endif // LLVM_LIB_TARGET_AMDGPU_UTILS_AMDGPUBASEINFO_H