//===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include #include "clang/AST/ASTContext.h" #include "clang/AST/ASTDiagnostic.h" #include "clang/AST/ExternalASTSource.h" #include "clang/AST/PrettyPrinter.h" #include "clang/Basic/DiagnosticIDs.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/Version.h" #include "clang/CodeGen/CodeGenAction.h" #include "clang/CodeGen/ModuleBuilder.h" #include "clang/Edit/Commit.h" #include "clang/Edit/EditedSource.h" #include "clang/Edit/EditsReceiver.h" #include "clang/Frontend/CompilerInstance.h" #include "clang/Frontend/CompilerInvocation.h" #include "clang/Frontend/FrontendActions.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Frontend/FrontendPluginRegistry.h" #include "clang/Frontend/TextDiagnosticBuffer.h" #include "clang/Frontend/TextDiagnosticPrinter.h" #include "clang/Lex/Preprocessor.h" #include "clang/Parse/ParseAST.h" #include "clang/Rewrite/Core/Rewriter.h" #include "clang/Rewrite/Frontend/FrontendActions.h" #include "clang/Sema/CodeCompleteConsumer.h" #include "clang/Sema/Sema.h" #include "clang/Sema/SemaConsumer.h" #include "llvm/ADT/StringRef.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/TargetSelect.h" #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wglobal-constructors" #include "llvm/ExecutionEngine/MCJIT.h" #pragma clang diagnostic pop #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Host.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Signals.h" #include "ClangDiagnostic.h" #include "ClangExpressionParser.h" #include "ClangASTSource.h" #include "ClangExpressionDeclMap.h" #include "ClangExpressionHelper.h" #include "ClangModulesDeclVendor.h" #include "ClangPersistentVariables.h" #include "IRForTarget.h" #include "lldb/Core/Debugger.h" #include "lldb/Core/Disassembler.h" #include "lldb/Core/Module.h" #include "lldb/Core/StreamFile.h" #include "lldb/Expression/IRDynamicChecks.h" #include "lldb/Expression/IRExecutionUnit.h" #include "lldb/Expression/IRInterpreter.h" #include "lldb/Host/File.h" #include "lldb/Host/HostInfo.h" #include "lldb/Symbol/ClangASTContext.h" #include "lldb/Symbol/SymbolVendor.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/Language.h" #include "lldb/Target/ObjCLanguageRuntime.h" #include "lldb/Target/Process.h" #include "lldb/Target/Target.h" #include "lldb/Target/ThreadPlanCallFunction.h" #include "lldb/Utility/DataBufferHeap.h" #include "lldb/Utility/LLDBAssert.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/Stream.h" #include "lldb/Utility/StreamString.h" #include "lldb/Utility/StringList.h" using namespace clang; using namespace llvm; using namespace lldb_private; //===----------------------------------------------------------------------===// // Utility Methods for Clang //===----------------------------------------------------------------------===// class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { ClangModulesDeclVendor &m_decl_vendor; ClangPersistentVariables &m_persistent_vars; StreamString m_error_stream; bool m_has_errors = false; public: LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, ClangPersistentVariables &persistent_vars) : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {} void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, const clang::Module * /*null*/) override { std::vector string_path; for (const std::pair &component : path) { string_path.push_back(ConstString(component.first->getName())); } StreamString error_stream; ClangModulesDeclVendor::ModuleVector exported_modules; if (!m_decl_vendor.AddModule(string_path, &exported_modules, m_error_stream)) { m_has_errors = true; } for (ClangModulesDeclVendor::ModuleID module : exported_modules) { m_persistent_vars.AddHandLoadedClangModule(module); } } bool hasErrors() { return m_has_errors; } llvm::StringRef getErrorString() { return m_error_stream.GetString(); } }; class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { public: ClangDiagnosticManagerAdapter() : m_passthrough(new clang::TextDiagnosticBuffer) {} ClangDiagnosticManagerAdapter( const std::shared_ptr &passthrough) : m_passthrough(passthrough) {} void ResetManager(DiagnosticManager *manager = nullptr) { m_manager = manager; } void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, const clang::Diagnostic &Info) { if (m_manager) { llvm::SmallVector diag_str; Info.FormatDiagnostic(diag_str); diag_str.push_back('\0'); const char *data = diag_str.data(); lldb_private::DiagnosticSeverity severity; bool make_new_diagnostic = true; switch (DiagLevel) { case DiagnosticsEngine::Level::Fatal: case DiagnosticsEngine::Level::Error: severity = eDiagnosticSeverityError; break; case DiagnosticsEngine::Level::Warning: severity = eDiagnosticSeverityWarning; break; case DiagnosticsEngine::Level::Remark: case DiagnosticsEngine::Level::Ignored: severity = eDiagnosticSeverityRemark; break; case DiagnosticsEngine::Level::Note: m_manager->AppendMessageToDiagnostic(data); make_new_diagnostic = false; } if (make_new_diagnostic) { ClangDiagnostic *new_diagnostic = new ClangDiagnostic(data, severity, Info.getID()); m_manager->AddDiagnostic(new_diagnostic); // Don't store away warning fixits, since the compiler doesn't have // enough context in an expression for the warning to be useful. // FIXME: Should we try to filter out FixIts that apply to our generated // code, and not the user's expression? if (severity == eDiagnosticSeverityError) { size_t num_fixit_hints = Info.getNumFixItHints(); for (size_t i = 0; i < num_fixit_hints; i++) { const clang::FixItHint &fixit = Info.getFixItHint(i); if (!fixit.isNull()) new_diagnostic->AddFixitHint(fixit); } } } } m_passthrough->HandleDiagnostic(DiagLevel, Info); } void FlushDiagnostics(DiagnosticsEngine &Diags) { m_passthrough->FlushDiagnostics(Diags); } DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const { return new ClangDiagnosticManagerAdapter(m_passthrough); } clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); } private: DiagnosticManager *m_manager = nullptr; std::shared_ptr m_passthrough; }; //===----------------------------------------------------------------------===// // Implementation of ClangExpressionParser //===----------------------------------------------------------------------===// ClangExpressionParser::ClangExpressionParser(ExecutionContextScope *exe_scope, Expression &expr, bool generate_debug_info) : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), m_pp_callbacks(nullptr) { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); // We can't compile expressions without a target. So if the exe_scope is // null or doesn't have a target, then we just need to get out of here. I'll // lldb_assert and not make any of the compiler objects since // I can't return errors directly from the constructor. Further calls will // check if the compiler was made and // bag out if it wasn't. if (!exe_scope) { lldb_assert(exe_scope, "Can't make an expression parser with a null scope.", __FUNCTION__, __FILE__, __LINE__); return; } lldb::TargetSP target_sp; target_sp = exe_scope->CalculateTarget(); if (!target_sp) { lldb_assert(target_sp.get(), "Can't make an expression parser with a null target.", __FUNCTION__, __FILE__, __LINE__); return; } // 1. Create a new compiler instance. m_compiler.reset(new CompilerInstance()); lldb::LanguageType frame_lang = expr.Language(); // defaults to lldb::eLanguageTypeUnknown bool overridden_target_opts = false; lldb_private::LanguageRuntime *lang_rt = nullptr; std::string abi; ArchSpec target_arch; target_arch = target_sp->GetArchitecture(); const auto target_machine = target_arch.GetMachine(); // If the expression is being evaluated in the context of an existing stack // frame, we introspect to see if the language runtime is available. lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); // Make sure the user hasn't provided a preferred execution language with // `expression --language X -- ...` if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) frame_lang = frame_sp->GetLanguage(); if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { lang_rt = process_sp->GetLanguageRuntime(frame_lang); if (log) log->Printf("Frame has language of type %s", Language::GetNameForLanguageType(frame_lang)); } // 2. Configure the compiler with a set of default options that are // appropriate for most situations. if (target_arch.IsValid()) { std::string triple = target_arch.GetTriple().str(); m_compiler->getTargetOpts().Triple = triple; if (log) log->Printf("Using %s as the target triple", m_compiler->getTargetOpts().Triple.c_str()); } else { // If we get here we don't have a valid target and just have to guess. // Sometimes this will be ok to just use the host target triple (when we // evaluate say "2+3", but other expressions like breakpoint conditions and // other things that _are_ target specific really shouldn't just be using // the host triple. In such a case the language runtime should expose an // overridden options set (3), below. m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); if (log) log->Printf("Using default target triple of %s", m_compiler->getTargetOpts().Triple.c_str()); } // Now add some special fixes for known architectures: Any arm32 iOS // environment, but not on arm64 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { m_compiler->getTargetOpts().ABI = "apcs-gnu"; } // Supported subsets of x86 if (target_machine == llvm::Triple::x86 || target_machine == llvm::Triple::x86_64) { m_compiler->getTargetOpts().Features.push_back("+sse"); m_compiler->getTargetOpts().Features.push_back("+sse2"); } // Set the target CPU to generate code for. This will be empty for any CPU // that doesn't really need to make a special // CPU string. m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); // Set the target ABI abi = GetClangTargetABI(target_arch); if (!abi.empty()) m_compiler->getTargetOpts().ABI = abi; // 3. Now allow the runtime to provide custom configuration options for the // target. In this case, a specialized language runtime is available and we // can query it for extra options. For 99% of use cases, this will not be // needed and should be provided when basic platform detection is not enough. if (lang_rt) overridden_target_opts = lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); if (overridden_target_opts) if (log && log->GetVerbose()) { LLDB_LOGV( log, "Using overridden target options for the expression evaluation"); auto opts = m_compiler->getTargetOpts(); LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); StringList::LogDump(log, opts.Features, "Features"); } // 4. Create and install the target on the compiler. m_compiler->createDiagnostics(); auto target_info = TargetInfo::CreateTargetInfo( m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); if (log) { log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign()); log->Printf("Target datalayout string: '%s'", target_info->getDataLayout().getStringRepresentation().c_str()); log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str()); log->Printf("Target vector alignment: %d", target_info->getMaxVectorAlign()); } m_compiler->setTarget(target_info); assert(m_compiler->hasTarget()); // 5. Set language options. lldb::LanguageType language = expr.Language(); switch (language) { case lldb::eLanguageTypeC: case lldb::eLanguageTypeC89: case lldb::eLanguageTypeC99: case lldb::eLanguageTypeC11: // FIXME: the following language option is a temporary workaround, // to "ask for C, get C++." // For now, the expression parser must use C++ anytime the language is a C // family language, because the expression parser uses features of C++ to // capture values. m_compiler->getLangOpts().CPlusPlus = true; break; case lldb::eLanguageTypeObjC: m_compiler->getLangOpts().ObjC = true; // FIXME: the following language option is a temporary workaround, // to "ask for ObjC, get ObjC++" (see comment above). m_compiler->getLangOpts().CPlusPlus = true; // Clang now sets as default C++14 as the default standard (with // GNU extensions), so we do the same here to avoid mismatches that // cause compiler error when evaluating expressions (e.g. nullptr not found // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see // two lines below) so we decide to be consistent with that, but this could // be re-evaluated in the future. m_compiler->getLangOpts().CPlusPlus11 = true; break; case lldb::eLanguageTypeC_plus_plus: case lldb::eLanguageTypeC_plus_plus_11: case lldb::eLanguageTypeC_plus_plus_14: m_compiler->getLangOpts().CPlusPlus11 = true; m_compiler->getHeaderSearchOpts().UseLibcxx = true; LLVM_FALLTHROUGH; case lldb::eLanguageTypeC_plus_plus_03: m_compiler->getLangOpts().CPlusPlus = true; if (process_sp) m_compiler->getLangOpts().ObjC = process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr; break; case lldb::eLanguageTypeObjC_plus_plus: case lldb::eLanguageTypeUnknown: default: m_compiler->getLangOpts().ObjC = true; m_compiler->getLangOpts().CPlusPlus = true; m_compiler->getLangOpts().CPlusPlus11 = true; m_compiler->getHeaderSearchOpts().UseLibcxx = true; break; } m_compiler->getLangOpts().Bool = true; m_compiler->getLangOpts().WChar = true; m_compiler->getLangOpts().Blocks = true; m_compiler->getLangOpts().DebuggerSupport = true; // Features specifically for debugger clients if (expr.DesiredResultType() == Expression::eResultTypeId) m_compiler->getLangOpts().DebuggerCastResultToId = true; m_compiler->getLangOpts().CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) .CharIsSignedByDefault(); // Spell checking is a nice feature, but it ends up completing a lot of types // that we didn't strictly speaking need to complete. As a result, we spend a // long time parsing and importing debug information. m_compiler->getLangOpts().SpellChecking = false; if (process_sp && m_compiler->getLangOpts().ObjC) { if (process_sp->GetObjCLanguageRuntime()) { if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() == ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); else m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::FragileMacOSX, VersionTuple(10, 7)); if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing()) m_compiler->getLangOpts().DebuggerObjCLiteral = true; } } m_compiler->getLangOpts().ThreadsafeStatics = false; m_compiler->getLangOpts().AccessControl = false; // Debuggers get universal access m_compiler->getLangOpts().DollarIdents = true; // $ indicates a persistent variable name // We enable all builtin functions beside the builtins from libc/libm (e.g. // 'fopen'). Those libc functions are already correctly handled by LLDB, and // additionally enabling them as expandable builtins is breaking Clang. m_compiler->getLangOpts().NoBuiltin = true; // Set CodeGen options m_compiler->getCodeGenOpts().EmitDeclMetadata = true; m_compiler->getCodeGenOpts().InstrumentFunctions = false; m_compiler->getCodeGenOpts().DisableFPElim = true; m_compiler->getCodeGenOpts().OmitLeafFramePointer = false; if (generate_debug_info) m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); else m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); // Disable some warnings. m_compiler->getDiagnostics().setSeverityForGroup( clang::diag::Flavor::WarningOrError, "unused-value", clang::diag::Severity::Ignored, SourceLocation()); m_compiler->getDiagnostics().setSeverityForGroup( clang::diag::Flavor::WarningOrError, "odr", clang::diag::Severity::Ignored, SourceLocation()); // Inform the target of the language options // // FIXME: We shouldn't need to do this, the target should be immutable once // created. This complexity should be lifted elsewhere. m_compiler->getTarget().adjust(m_compiler->getLangOpts()); // 6. Set up the diagnostic buffer for reporting errors m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter); // 7. Set up the source management objects inside the compiler clang::FileSystemOptions file_system_options; m_file_manager.reset(new clang::FileManager(file_system_options)); if (!m_compiler->hasSourceManager()) m_compiler->createSourceManager(*m_file_manager.get()); m_compiler->createFileManager(); m_compiler->createPreprocessor(TU_Complete); if (ClangModulesDeclVendor *decl_vendor = target_sp->GetClangModulesDeclVendor()) { ClangPersistentVariables *clang_persistent_vars = llvm::cast( target_sp->GetPersistentExpressionStateForLanguage( lldb::eLanguageTypeC)); std::unique_ptr pp_callbacks( new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars)); m_pp_callbacks = static_cast(pp_callbacks.get()); m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); } // 8. Most of this we get from the CompilerInstance, but we also want to give // the context an ExternalASTSource. auto &PP = m_compiler->getPreprocessor(); auto &builtin_context = PP.getBuiltinInfo(); builtin_context.initializeBuiltins(PP.getIdentifierTable(), m_compiler->getLangOpts()); m_compiler->createASTContext(); clang::ASTContext &ast_context = m_compiler->getASTContext(); ClangExpressionHelper *type_system_helper = dyn_cast(m_expr.GetTypeSystemHelper()); ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); if (decl_map) { llvm::IntrusiveRefCntPtr ast_source( decl_map->CreateProxy()); decl_map->InstallASTContext(ast_context, m_compiler->getFileManager()); ast_context.setExternalSource(ast_source); } m_ast_context.reset( new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str())); m_ast_context->setASTContext(&ast_context); std::string module_name("$__lldb_module"); m_llvm_context.reset(new LLVMContext()); m_code_generator.reset(CreateLLVMCodeGen( m_compiler->getDiagnostics(), module_name, m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), m_compiler->getCodeGenOpts(), *m_llvm_context)); } ClangExpressionParser::~ClangExpressionParser() {} namespace { //---------------------------------------------------------------------- /// @class CodeComplete /// /// A code completion consumer for the clang Sema that is responsible for /// creating the completion suggestions when a user requests completion /// of an incomplete `expr` invocation. //---------------------------------------------------------------------- class CodeComplete : public CodeCompleteConsumer { CodeCompletionTUInfo m_info; std::string m_expr; unsigned m_position = 0; CompletionRequest &m_request; /// The printing policy we use when printing declarations for our completion /// descriptions. clang::PrintingPolicy m_desc_policy; /// Returns true if the given character can be used in an identifier. /// This also returns true for numbers because for completion we usually /// just iterate backwards over iterators. /// /// Note: lldb uses '$' in its internal identifiers, so we also allow this. static bool IsIdChar(char c) { return c == '_' || std::isalnum(c) || c == '$'; } /// Returns true if the given character is used to separate arguments /// in the command line of lldb. static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; } /// Drops all tokens in front of the expression that are unrelated for /// the completion of the cmd line. 'unrelated' means here that the token /// is not interested for the lldb completion API result. StringRef dropUnrelatedFrontTokens(StringRef cmd) { if (cmd.empty()) return cmd; // If we are at the start of a word, then all tokens are unrelated to // the current completion logic. if (IsTokenSeparator(cmd.back())) return StringRef(); // Remove all previous tokens from the string as they are unrelated // to completing the current token. StringRef to_remove = cmd; while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) { to_remove = to_remove.drop_back(); } cmd = cmd.drop_front(to_remove.size()); return cmd; } /// Removes the last identifier token from the given cmd line. StringRef removeLastToken(StringRef cmd) { while (!cmd.empty() && IsIdChar(cmd.back())) { cmd = cmd.drop_back(); } return cmd; } /// Attemps to merge the given completion from the given position into the /// existing command. Returns the completion string that can be returned to /// the lldb completion API. std::string mergeCompletion(StringRef existing, unsigned pos, StringRef completion) { StringRef existing_command = existing.substr(0, pos); // We rewrite the last token with the completion, so let's drop that // token from the command. existing_command = removeLastToken(existing_command); // We also should remove all previous tokens from the command as they // would otherwise be added to the completion that already has the // completion. existing_command = dropUnrelatedFrontTokens(existing_command); return existing_command.str() + completion.str(); } public: /// Constructs a CodeComplete consumer that can be attached to a Sema. /// @param[out] matches /// The list of matches that the lldb completion API expects as a result. /// This may already contain matches, so it's only allowed to append /// to this variable. /// @param[out] expr /// The whole expression string that we are currently parsing. This /// string needs to be equal to the input the user typed, and NOT the /// final code that Clang is parsing. /// @param[out] position /// The character position of the user cursor in the `expr` parameter. /// CodeComplete(CompletionRequest &request, clang::LangOptions ops, std::string expr, unsigned position) : CodeCompleteConsumer(CodeCompleteOptions(), false), m_info(std::make_shared()), m_expr(expr), m_position(position), m_request(request), m_desc_policy(ops) { // Ensure that the printing policy is producing a description that is as // short as possible. m_desc_policy.SuppressScope = true; m_desc_policy.SuppressTagKeyword = true; m_desc_policy.FullyQualifiedName = false; m_desc_policy.TerseOutput = true; m_desc_policy.IncludeNewlines = false; m_desc_policy.UseVoidForZeroParams = false; m_desc_policy.Bool = true; } /// Deregisters and destroys this code-completion consumer. virtual ~CodeComplete() {} /// \name Code-completion filtering /// Check if the result should be filtered out. bool isResultFilteredOut(StringRef Filter, CodeCompletionResult Result) override { // This code is mostly copied from CodeCompleteConsumer. switch (Result.Kind) { case CodeCompletionResult::RK_Declaration: return !( Result.Declaration->getIdentifier() && Result.Declaration->getIdentifier()->getName().startswith(Filter)); case CodeCompletionResult::RK_Keyword: return !StringRef(Result.Keyword).startswith(Filter); case CodeCompletionResult::RK_Macro: return !Result.Macro->getName().startswith(Filter); case CodeCompletionResult::RK_Pattern: return !StringRef(Result.Pattern->getAsString()).startswith(Filter); } // If we trigger this assert or the above switch yields a warning, then // CodeCompletionResult has been enhanced with more kinds of completion // results. Expand the switch above in this case. assert(false && "Unknown completion result type?"); // If we reach this, then we should just ignore whatever kind of unknown // result we got back. We probably can't turn it into any kind of useful // completion suggestion with the existing code. return true; } /// \name Code-completion callbacks /// Process the finalized code-completion results. void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context, CodeCompletionResult *Results, unsigned NumResults) override { // The Sema put the incomplete token we try to complete in here during // lexing, so we need to retrieve it here to know what we are completing. StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter(); // Iterate over all the results. Filter out results we don't want and // process the rest. for (unsigned I = 0; I != NumResults; ++I) { // Filter the results with the information from the Sema. if (!Filter.empty() && isResultFilteredOut(Filter, Results[I])) continue; CodeCompletionResult &R = Results[I]; std::string ToInsert; std::string Description; // Handle the different completion kinds that come from the Sema. switch (R.Kind) { case CodeCompletionResult::RK_Declaration: { const NamedDecl *D = R.Declaration; ToInsert = R.Declaration->getNameAsString(); // If we have a function decl that has no arguments we want to // complete the empty parantheses for the user. If the function has // arguments, we at least complete the opening bracket. if (const FunctionDecl *F = dyn_cast(D)) { if (F->getNumParams() == 0) ToInsert += "()"; else ToInsert += "("; raw_string_ostream OS(Description); F->print(OS, m_desc_policy, false); OS.flush(); } else if (const VarDecl *V = dyn_cast(D)) { Description = V->getType().getAsString(m_desc_policy); } else if (const FieldDecl *F = dyn_cast(D)) { Description = F->getType().getAsString(m_desc_policy); } else if (const NamespaceDecl *N = dyn_cast(D)) { // If we try to complete a namespace, then we can directly append // the '::'. if (!N->isAnonymousNamespace()) ToInsert += "::"; } break; } case CodeCompletionResult::RK_Keyword: ToInsert = R.Keyword; break; case CodeCompletionResult::RK_Macro: ToInsert = R.Macro->getName().str(); break; case CodeCompletionResult::RK_Pattern: ToInsert = R.Pattern->getTypedText(); break; } // At this point all information is in the ToInsert string. // We also filter some internal lldb identifiers here. The user // shouldn't see these. if (StringRef(ToInsert).startswith("$__lldb_")) continue; if (!ToInsert.empty()) { // Merge the suggested Token into the existing command line to comply // with the kind of result the lldb API expects. std::string CompletionSuggestion = mergeCompletion(m_expr, m_position, ToInsert); m_request.AddCompletion(CompletionSuggestion, Description); } } } /// \param S the semantic-analyzer object for which code-completion is being /// done. /// /// \param CurrentArg the index of the current argument. /// /// \param Candidates an array of overload candidates. /// /// \param NumCandidates the number of overload candidates void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg, OverloadCandidate *Candidates, unsigned NumCandidates, SourceLocation OpenParLoc) override { // At the moment we don't filter out any overloaded candidates. } CodeCompletionAllocator &getAllocator() override { return m_info.getAllocator(); } CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; } }; } // namespace bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line, unsigned pos, unsigned typed_pos) { DiagnosticManager mgr; // We need the raw user expression here because that's what the CodeComplete // class uses to provide completion suggestions. // However, the `Text` method only gives us the transformed expression here. // To actually get the raw user input here, we have to cast our expression to // the LLVMUserExpression which exposes the right API. This should never fail // as we always have a ClangUserExpression whenever we call this. LLVMUserExpression &llvm_expr = *static_cast(&m_expr); CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr.GetUserText(), typed_pos); // We don't need a code generator for parsing. m_code_generator.reset(); // Start parsing the expression with our custom code completion consumer. ParseInternal(mgr, &CC, line, pos); return true; } unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { return ParseInternal(diagnostic_manager); } unsigned ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager, CodeCompleteConsumer *completion_consumer, unsigned completion_line, unsigned completion_column) { ClangDiagnosticManagerAdapter *adapter = static_cast( m_compiler->getDiagnostics().getClient()); clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough(); diag_buf->FlushDiagnostics(m_compiler->getDiagnostics()); adapter->ResetManager(&diagnostic_manager); const char *expr_text = m_expr.Text(); clang::SourceManager &source_mgr = m_compiler->getSourceManager(); bool created_main_file = false; // Clang wants to do completion on a real file known by Clang's file manager, // so we have to create one to make this work. // TODO: We probably could also simulate to Clang's file manager that there // is a real file that contains our code. bool should_create_file = completion_consumer != nullptr; // We also want a real file on disk if we generate full debug info. should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() == codegenoptions::FullDebugInfo; if (should_create_file) { int temp_fd = -1; llvm::SmallString<128> result_path; if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) { tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); std::string temp_source_path = tmpdir_file_spec.GetPath(); llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); } else { llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); } if (temp_fd != -1) { lldb_private::File file(temp_fd, true); const size_t expr_text_len = strlen(expr_text); size_t bytes_written = expr_text_len; if (file.Write(expr_text, bytes_written).Success()) { if (bytes_written == expr_text_len) { file.Close(); source_mgr.setMainFileID( source_mgr.createFileID(m_file_manager->getFile(result_path), SourceLocation(), SrcMgr::C_User)); created_main_file = true; } } } } if (!created_main_file) { std::unique_ptr memory_buffer = MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__); source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); } diag_buf->BeginSourceFile(m_compiler->getLangOpts(), &m_compiler->getPreprocessor()); ClangExpressionHelper *type_system_helper = dyn_cast(m_expr.GetTypeSystemHelper()); ASTConsumer *ast_transformer = type_system_helper->ASTTransformer(m_code_generator.get()); if (ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap()) decl_map->InstallCodeGenerator(m_code_generator.get()); // If we want to parse for code completion, we need to attach our code // completion consumer to the Sema and specify a completion position. // While parsing the Sema will call this consumer with the provided // completion suggestions. if (completion_consumer) { auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID()); auto &PP = m_compiler->getPreprocessor(); // Lines and columns start at 1 in Clang, but code completion positions are // indexed from 0, so we need to add 1 to the line and column here. ++completion_line; ++completion_column; PP.SetCodeCompletionPoint(main_file, completion_line, completion_column); } if (ast_transformer) { ast_transformer->Initialize(m_compiler->getASTContext()); ParseAST(m_compiler->getPreprocessor(), ast_transformer, m_compiler->getASTContext(), false, TU_Complete, completion_consumer); } else { m_code_generator->Initialize(m_compiler->getASTContext()); ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(), m_compiler->getASTContext(), false, TU_Complete, completion_consumer); } diag_buf->EndSourceFile(); unsigned num_errors = diag_buf->getNumErrors(); if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { num_errors++; diagnostic_manager.PutString(eDiagnosticSeverityError, "while importing modules:"); diagnostic_manager.AppendMessageToDiagnostic( m_pp_callbacks->getErrorString()); } if (!num_errors) { if (type_system_helper->DeclMap() && !type_system_helper->DeclMap()->ResolveUnknownTypes()) { diagnostic_manager.Printf(eDiagnosticSeverityError, "Couldn't infer the type of a variable"); num_errors++; } } if (!num_errors) { type_system_helper->CommitPersistentDecls(); } adapter->ResetManager(); return num_errors; } std::string ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { std::string abi; if (target_arch.IsMIPS()) { switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { case ArchSpec::eMIPSABI_N64: abi = "n64"; break; case ArchSpec::eMIPSABI_N32: abi = "n32"; break; case ArchSpec::eMIPSABI_O32: abi = "o32"; break; default: break; } } return abi; } bool ClangExpressionParser::RewriteExpression( DiagnosticManager &diagnostic_manager) { clang::SourceManager &source_manager = m_compiler->getSourceManager(); clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), nullptr); clang::edit::Commit commit(editor); clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); class RewritesReceiver : public edit::EditsReceiver { Rewriter &rewrite; public: RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} void insert(SourceLocation loc, StringRef text) override { rewrite.InsertText(loc, text); } void replace(CharSourceRange range, StringRef text) override { rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); } }; RewritesReceiver rewrites_receiver(rewriter); const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); size_t num_diags = diagnostics.size(); if (num_diags == 0) return false; for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) { const ClangDiagnostic *diagnostic = llvm::dyn_cast(diag); if (diagnostic && diagnostic->HasFixIts()) { for (const FixItHint &fixit : diagnostic->FixIts()) { // This is cobbed from clang::Rewrite::FixItRewriter. if (fixit.CodeToInsert.empty()) { if (fixit.InsertFromRange.isValid()) { commit.insertFromRange(fixit.RemoveRange.getBegin(), fixit.InsertFromRange, /*afterToken=*/false, fixit.BeforePreviousInsertions); } else commit.remove(fixit.RemoveRange); } else { if (fixit.RemoveRange.isTokenRange() || fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) commit.replace(fixit.RemoveRange, fixit.CodeToInsert); else commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, /*afterToken=*/false, fixit.BeforePreviousInsertions); } } } } // FIXME - do we want to try to propagate specific errors here? if (!commit.isCommitable()) return false; else if (!editor.commit(commit)) return false; // Now play all the edits, and stash the result in the diagnostic manager. editor.applyRewrites(rewrites_receiver); RewriteBuffer &main_file_buffer = rewriter.getEditBuffer(source_manager.getMainFileID()); std::string fixed_expression; llvm::raw_string_ostream out_stream(fixed_expression); main_file_buffer.write(out_stream); out_stream.flush(); diagnostic_manager.SetFixedExpression(fixed_expression); return true; } static bool FindFunctionInModule(ConstString &mangled_name, llvm::Module *module, const char *orig_name) { for (const auto &func : module->getFunctionList()) { const StringRef &name = func.getName(); if (name.find(orig_name) != StringRef::npos) { mangled_name.SetString(name); return true; } } return false; } lldb_private::Status ClangExpressionParser::PrepareForExecution( lldb::addr_t &func_addr, lldb::addr_t &func_end, lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, bool &can_interpret, ExecutionPolicy execution_policy) { func_addr = LLDB_INVALID_ADDRESS; func_end = LLDB_INVALID_ADDRESS; Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); lldb_private::Status err; std::unique_ptr llvm_module_ap( m_code_generator->ReleaseModule()); if (!llvm_module_ap.get()) { err.SetErrorToGenericError(); err.SetErrorString("IR doesn't contain a module"); return err; } ConstString function_name; if (execution_policy != eExecutionPolicyTopLevel) { // Find the actual name of the function (it's often mangled somehow) if (!FindFunctionInModule(function_name, llvm_module_ap.get(), m_expr.FunctionName())) { err.SetErrorToGenericError(); err.SetErrorStringWithFormat("Couldn't find %s() in the module", m_expr.FunctionName()); return err; } else { if (log) log->Printf("Found function %s for %s", function_name.AsCString(), m_expr.FunctionName()); } } SymbolContext sc; if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { sc.target_sp = target_sp; } LLVMUserExpression::IRPasses custom_passes; { auto lang = m_expr.Language(); if (log) log->Printf("%s - Current expression language is %s\n", __FUNCTION__, Language::GetNameForLanguageType(lang)); lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); if (process_sp && lang != lldb::eLanguageTypeUnknown) { auto runtime = process_sp->GetLanguageRuntime(lang); if (runtime) runtime->GetIRPasses(custom_passes); } } if (custom_passes.EarlyPasses) { if (log) log->Printf("%s - Running Early IR Passes from LanguageRuntime on " "expression module '%s'", __FUNCTION__, m_expr.FunctionName()); custom_passes.EarlyPasses->run(*llvm_module_ap); } execution_unit_sp.reset( new IRExecutionUnit(m_llvm_context, // handed off here llvm_module_ap, // handed off here function_name, exe_ctx.GetTargetSP(), sc, m_compiler->getTargetOpts().Features)); ClangExpressionHelper *type_system_helper = dyn_cast(m_expr.GetTypeSystemHelper()); ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); // result can be NULL if (decl_map) { Stream *error_stream = NULL; Target *target = exe_ctx.GetTargetPtr(); error_stream = target->GetDebugger().GetErrorFile().get(); IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), *execution_unit_sp, *error_stream, function_name.AsCString()); bool ir_can_run = ir_for_target.runOnModule(*execution_unit_sp->GetModule()); if (!ir_can_run) { err.SetErrorString( "The expression could not be prepared to run in the target"); return err; } Process *process = exe_ctx.GetProcessPtr(); if (execution_policy != eExecutionPolicyAlways && execution_policy != eExecutionPolicyTopLevel) { lldb_private::Status interpret_error; bool interpret_function_calls = !process ? false : process->CanInterpretFunctionCalls(); can_interpret = IRInterpreter::CanInterpret( *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), interpret_error, interpret_function_calls); if (!can_interpret && execution_policy == eExecutionPolicyNever) { err.SetErrorStringWithFormat("Can't run the expression locally: %s", interpret_error.AsCString()); return err; } } if (!process && execution_policy == eExecutionPolicyAlways) { err.SetErrorString("Expression needed to run in the target, but the " "target can't be run"); return err; } if (!process && execution_policy == eExecutionPolicyTopLevel) { err.SetErrorString("Top-level code needs to be inserted into a runnable " "target, but the target can't be run"); return err; } if (execution_policy == eExecutionPolicyAlways || (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { if (m_expr.NeedsValidation() && process) { if (!process->GetDynamicCheckers()) { DynamicCheckerFunctions *dynamic_checkers = new DynamicCheckerFunctions(); DiagnosticManager install_diagnostics; if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { if (install_diagnostics.Diagnostics().size()) err.SetErrorString(install_diagnostics.GetString().c_str()); else err.SetErrorString("couldn't install checkers, unknown error"); return err; } process->SetDynamicCheckers(dynamic_checkers); if (log) log->Printf("== [ClangUserExpression::Evaluate] Finished " "installing dynamic checkers =="); } IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(), function_name.AsCString()); llvm::Module *module = execution_unit_sp->GetModule(); if (!module || !ir_dynamic_checks.runOnModule(*module)) { err.SetErrorToGenericError(); err.SetErrorString("Couldn't add dynamic checks to the expression"); return err; } if (custom_passes.LatePasses) { if (log) log->Printf("%s - Running Late IR Passes from LanguageRuntime on " "expression module '%s'", __FUNCTION__, m_expr.FunctionName()); custom_passes.LatePasses->run(*module); } } } if (execution_policy == eExecutionPolicyAlways || execution_policy == eExecutionPolicyTopLevel || !can_interpret) { execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); } } else { execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); } return err; } lldb_private::Status ClangExpressionParser::RunStaticInitializers( lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { lldb_private::Status err; lldbassert(execution_unit_sp.get()); lldbassert(exe_ctx.HasThreadScope()); if (!execution_unit_sp.get()) { err.SetErrorString( "can't run static initializers for a NULL execution unit"); return err; } if (!exe_ctx.HasThreadScope()) { err.SetErrorString("can't run static initializers without a thread"); return err; } std::vector static_initializers; execution_unit_sp->GetStaticInitializers(static_initializers); for (lldb::addr_t static_initializer : static_initializers) { EvaluateExpressionOptions options; lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), llvm::ArrayRef(), options)); DiagnosticManager execution_errors; lldb::ExpressionResults results = exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( exe_ctx, call_static_initializer, options, execution_errors); if (results != lldb::eExpressionCompleted) { err.SetErrorStringWithFormat("couldn't run static initializer: %s", execution_errors.GetString().c_str()); return err; } } return err; }