/*
 * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
 * All rights reserved.
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
 */



/* **************************************
*  Tuning parameters
****************************************/
#ifndef BMK_TIMETEST_DEFAULT_S   /* default minimum time per test */
#define BMK_TIMETEST_DEFAULT_S 3
#endif


/* **************************************
*  Compiler Warnings
****************************************/
#ifdef _MSC_VER
#  pragma warning(disable : 4127)   /* disable: C4127: conditional expression is constant */
#endif


/* *************************************
*  Includes
***************************************/
#include "platform.h"    /* Large Files support */
#include "util.h"        /* UTIL_getFileSize, UTIL_sleep */
#include <stdlib.h>      /* malloc, free */
#include <string.h>      /* memset */
#include <stdio.h>       /* fprintf, fopen */
#include <assert.h>      /* assert */

#include "mem.h"
#define ZSTD_STATIC_LINKING_ONLY
#include "zstd.h"
#include "datagen.h"     /* RDG_genBuffer */
#include "xxhash.h"


/* *************************************
*  Constants
***************************************/
#ifndef ZSTD_GIT_COMMIT
#  define ZSTD_GIT_COMMIT_STRING ""
#else
#  define ZSTD_GIT_COMMIT_STRING ZSTD_EXPAND_AND_QUOTE(ZSTD_GIT_COMMIT)
#endif

#define TIMELOOP_MICROSEC     (1*1000000ULL) /* 1 second */
#define TIMELOOP_NANOSEC      (1*1000000000ULL) /* 1 second */
#define ACTIVEPERIOD_MICROSEC (70*TIMELOOP_MICROSEC) /* 70 seconds */
#define COOLPERIOD_SEC        10

#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)

static const size_t maxMemory = (sizeof(size_t)==4)  ?  (2 GB - 64 MB) : (size_t)(1ULL << ((sizeof(size_t)*8)-31));

static U32 g_compressibilityDefault = 50;


/* *************************************
*  console display
***************************************/
#define DISPLAY(...)         fprintf(stderr, __VA_ARGS__)
#define DISPLAYLEVEL(l, ...) if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); }
static int g_displayLevel = 2;   /* 0 : no display;   1: errors;   2 : + result + interaction + warnings;   3 : + progression;   4 : + information */

static const U64 g_refreshRate = SEC_TO_MICRO / 6;
static UTIL_time_t g_displayClock = UTIL_TIME_INITIALIZER;

#define DISPLAYUPDATE(l, ...) { if (g_displayLevel>=l) { \
            if ((UTIL_clockSpanMicro(g_displayClock) > g_refreshRate) || (g_displayLevel>=4)) \
            { g_displayClock = UTIL_getTime(); DISPLAY(__VA_ARGS__); \
            if (g_displayLevel>=4) fflush(stderr); } } }


/* *************************************
*  Exceptions
***************************************/
#ifndef DEBUG
#  define DEBUG 0
#endif
#define DEBUGOUTPUT(...) { if (DEBUG) DISPLAY(__VA_ARGS__); }
#define EXM_THROW(error, ...)  {                      \
    DEBUGOUTPUT("%s: %i: \n", __FILE__, __LINE__);    \
    DISPLAYLEVEL(1, "Error %i : ", error);            \
    DISPLAYLEVEL(1, __VA_ARGS__);                     \
    DISPLAYLEVEL(1, " \n");                           \
    exit(error);                                      \
}


/* *************************************
*  Benchmark Parameters
***************************************/
static int g_additionalParam = 0;
static U32 g_decodeOnly = 0;

void BMK_setNotificationLevel(unsigned level) { g_displayLevel=level; }

void BMK_setAdditionalParam(int additionalParam) { g_additionalParam=additionalParam; }

static U32 g_nbSeconds = BMK_TIMETEST_DEFAULT_S;
void BMK_setNbSeconds(unsigned nbSeconds)
{
    g_nbSeconds = nbSeconds;
    DISPLAYLEVEL(3, "- test >= %u seconds per compression / decompression - \n", g_nbSeconds);
}

static size_t g_blockSize = 0;
void BMK_setBlockSize(size_t blockSize)
{
    g_blockSize = blockSize;
    if (g_blockSize) DISPLAYLEVEL(2, "using blocks of size %u KB \n", (U32)(blockSize>>10));
}

void BMK_setDecodeOnlyMode(unsigned decodeFlag) { g_decodeOnly = (decodeFlag>0); }

static U32 g_nbWorkers = 0;
void BMK_setNbWorkers(unsigned nbWorkers) {
#ifndef ZSTD_MULTITHREAD
    if (nbWorkers > 0) DISPLAYLEVEL(2, "Note : multi-threading is disabled \n");
#endif
    g_nbWorkers = nbWorkers;
}

static U32 g_realTime = 0;
void BMK_setRealTime(unsigned priority) {
    g_realTime = (priority>0);
}

static U32 g_separateFiles = 0;
void BMK_setSeparateFiles(unsigned separate) {
    g_separateFiles = (separate>0);
}

static U32 g_ldmFlag = 0;
void BMK_setLdmFlag(unsigned ldmFlag) {
    g_ldmFlag = ldmFlag;
}

static U32 g_ldmMinMatch = 0;
void BMK_setLdmMinMatch(unsigned ldmMinMatch) {
    g_ldmMinMatch = ldmMinMatch;
}

static U32 g_ldmHashLog = 0;
void BMK_setLdmHashLog(unsigned ldmHashLog) {
    g_ldmHashLog = ldmHashLog;
}

#define BMK_LDM_PARAM_NOTSET 9999
static U32 g_ldmBucketSizeLog = BMK_LDM_PARAM_NOTSET;
void BMK_setLdmBucketSizeLog(unsigned ldmBucketSizeLog) {
    g_ldmBucketSizeLog = ldmBucketSizeLog;
}

static U32 g_ldmHashEveryLog = BMK_LDM_PARAM_NOTSET;
void BMK_setLdmHashEveryLog(unsigned ldmHashEveryLog) {
    g_ldmHashEveryLog = ldmHashEveryLog;
}


/* ********************************************************
*  Bench functions
**********************************************************/
typedef struct {
    const void* srcPtr;
    size_t srcSize;
    void*  cPtr;
    size_t cRoom;
    size_t cSize;
    void*  resPtr;
    size_t resSize;
} blockParam_t;



#undef MIN
#undef MAX
#define MIN(a,b)    ((a) < (b) ? (a) : (b))
#define MAX(a,b)    ((a) > (b) ? (a) : (b))

static int BMK_benchMem(const void* srcBuffer, size_t srcSize,
                        const char* displayName, int cLevel,
                        const size_t* fileSizes, U32 nbFiles,
                        const void* dictBuffer, size_t dictBufferSize,
                        const ZSTD_compressionParameters* const comprParams)
{
    size_t const blockSize = ((g_blockSize>=32 && !g_decodeOnly) ? g_blockSize : srcSize) + (!srcSize) /* avoid div by 0 */ ;
    U32 const maxNbBlocks = (U32) ((srcSize + (blockSize-1)) / blockSize) + nbFiles;
    blockParam_t* const blockTable = (blockParam_t*) malloc(maxNbBlocks * sizeof(blockParam_t));
    size_t const maxCompressedSize = ZSTD_compressBound(srcSize) + (maxNbBlocks * 1024);   /* add some room for safety */
    void* const compressedBuffer = malloc(maxCompressedSize);
    void* resultBuffer = malloc(srcSize);
    ZSTD_CCtx* const ctx = ZSTD_createCCtx();
    ZSTD_DCtx* const dctx = ZSTD_createDCtx();
    size_t const loadedCompressedSize = srcSize;
    size_t cSize = 0;
    double ratio = 0.;
    U32 nbBlocks;

    /* checks */
    if (!compressedBuffer || !resultBuffer || !blockTable || !ctx || !dctx)
        EXM_THROW(31, "allocation error : not enough memory");

    /* init */
    if (strlen(displayName)>17) displayName += strlen(displayName)-17;   /* display last 17 characters */
    if (g_nbWorkers==1) g_nbWorkers=0;   /* prefer synchronous mode */

    if (g_decodeOnly) {  /* benchmark only decompression : source must be already compressed */
        const char* srcPtr = (const char*)srcBuffer;
        U64 totalDSize64 = 0;
        U32 fileNb;
        for (fileNb=0; fileNb<nbFiles; fileNb++) {
            U64 const fSize64 = ZSTD_findDecompressedSize(srcPtr, fileSizes[fileNb]);
            if (fSize64==0) EXM_THROW(32, "Impossible to determine original size ");
            totalDSize64 += fSize64;
            srcPtr += fileSizes[fileNb];
        }
        {   size_t const decodedSize = (size_t)totalDSize64;
            if (totalDSize64 > decodedSize) EXM_THROW(32, "original size is too large");   /* size_t overflow */
            free(resultBuffer);
            resultBuffer = malloc(decodedSize);
            if (!resultBuffer) EXM_THROW(33, "not enough memory");
            cSize = srcSize;
            srcSize = decodedSize;
            ratio = (double)srcSize / (double)cSize;
    }   }

    /* Init blockTable data */
    {   const char* srcPtr = (const char*)srcBuffer;
        char* cPtr = (char*)compressedBuffer;
        char* resPtr = (char*)resultBuffer;
        U32 fileNb;
        for (nbBlocks=0, fileNb=0; fileNb<nbFiles; fileNb++) {
            size_t remaining = fileSizes[fileNb];
            U32 const nbBlocksforThisFile = g_decodeOnly ? 1 : (U32)((remaining + (blockSize-1)) / blockSize);
            U32 const blockEnd = nbBlocks + nbBlocksforThisFile;
            for ( ; nbBlocks<blockEnd; nbBlocks++) {
                size_t const thisBlockSize = MIN(remaining, blockSize);
                blockTable[nbBlocks].srcPtr = (const void*)srcPtr;
                blockTable[nbBlocks].srcSize = thisBlockSize;
                blockTable[nbBlocks].cPtr = (void*)cPtr;
                blockTable[nbBlocks].cRoom = g_decodeOnly ? thisBlockSize : ZSTD_compressBound(thisBlockSize);
                blockTable[nbBlocks].cSize = blockTable[nbBlocks].cRoom;
                blockTable[nbBlocks].resPtr = (void*)resPtr;
                blockTable[nbBlocks].resSize = g_decodeOnly ? (size_t) ZSTD_findDecompressedSize(srcPtr, thisBlockSize) : thisBlockSize;
                srcPtr += thisBlockSize;
                cPtr += blockTable[nbBlocks].cRoom;
                resPtr += thisBlockSize;
                remaining -= thisBlockSize;
    }   }   }

    /* warmimg up memory */
    if (g_decodeOnly) {
        memcpy(compressedBuffer, srcBuffer, loadedCompressedSize);
    } else {
        RDG_genBuffer(compressedBuffer, maxCompressedSize, 0.10, 0.50, 1);
    }

    /* Bench */
    {   U64 fastestC = (U64)(-1LL), fastestD = (U64)(-1LL);
        U64 const crcOrig = g_decodeOnly ? 0 : XXH64(srcBuffer, srcSize, 0);
        UTIL_time_t coolTime;
        U64 const maxTime = (g_nbSeconds * TIMELOOP_NANOSEC) + 1;
        U32 nbDecodeLoops = (U32)((100 MB) / (srcSize+1)) + 1;  /* initial conservative speed estimate */
        U32 nbCompressionLoops = (U32)((2 MB) / (srcSize+1)) + 1;  /* initial conservative speed estimate */
        U64 totalCTime=0, totalDTime=0;
        U32 cCompleted=g_decodeOnly, dCompleted=0;
#       define NB_MARKS 4
        const char* const marks[NB_MARKS] = { " |", " /", " =",  "\\" };
        U32 markNb = 0;

        coolTime = UTIL_getTime();
        DISPLAYLEVEL(2, "\r%79s\r", "");
        while (!cCompleted || !dCompleted) {

            /* overheat protection */
            if (UTIL_clockSpanMicro(coolTime) > ACTIVEPERIOD_MICROSEC) {
                DISPLAYLEVEL(2, "\rcooling down ...    \r");
                UTIL_sleep(COOLPERIOD_SEC);
                coolTime = UTIL_getTime();
            }

            if (!g_decodeOnly) {
                /* Compression */
                DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->\r", marks[markNb], displayName, (U32)srcSize);
                if (!cCompleted) memset(compressedBuffer, 0xE5, maxCompressedSize);  /* warm up and erase result buffer */

                UTIL_sleepMilli(5);  /* give processor time to other processes */
                UTIL_waitForNextTick();

                if (!cCompleted) {   /* still some time to do compression tests */
                    U32 nbLoops = 0;
                    UTIL_time_t const clockStart = UTIL_getTime();
                    ZSTD_CCtx_setParameter(ctx, ZSTD_p_nbWorkers, g_nbWorkers);
                    ZSTD_CCtx_setParameter(ctx, ZSTD_p_compressionLevel, cLevel);
                    ZSTD_CCtx_setParameter(ctx, ZSTD_p_enableLongDistanceMatching, g_ldmFlag);
                    ZSTD_CCtx_setParameter(ctx, ZSTD_p_ldmMinMatch, g_ldmMinMatch);
                    ZSTD_CCtx_setParameter(ctx, ZSTD_p_ldmHashLog, g_ldmHashLog);
                    if (g_ldmBucketSizeLog != BMK_LDM_PARAM_NOTSET) {
                      ZSTD_CCtx_setParameter(ctx, ZSTD_p_ldmBucketSizeLog, g_ldmBucketSizeLog);
                    }
                    if (g_ldmHashEveryLog != BMK_LDM_PARAM_NOTSET) {
                      ZSTD_CCtx_setParameter(ctx, ZSTD_p_ldmHashEveryLog, g_ldmHashEveryLog);
                    }
                    ZSTD_CCtx_setParameter(ctx, ZSTD_p_windowLog, comprParams->windowLog);
                    ZSTD_CCtx_setParameter(ctx, ZSTD_p_hashLog, comprParams->hashLog);
                    ZSTD_CCtx_setParameter(ctx, ZSTD_p_chainLog, comprParams->chainLog);
                    ZSTD_CCtx_setParameter(ctx, ZSTD_p_searchLog, comprParams->searchLog);
                    ZSTD_CCtx_setParameter(ctx, ZSTD_p_minMatch, comprParams->searchLength);
                    ZSTD_CCtx_setParameter(ctx, ZSTD_p_targetLength, comprParams->targetLength);
                    ZSTD_CCtx_setParameter(ctx, ZSTD_p_compressionStrategy, comprParams->strategy);
                    ZSTD_CCtx_loadDictionary(ctx, dictBuffer, dictBufferSize);

                    if (!g_nbSeconds) nbCompressionLoops=1;
                    for (nbLoops=0; nbLoops<nbCompressionLoops; nbLoops++) {
                        U32 blockNb;
                        for (blockNb=0; blockNb<nbBlocks; blockNb++) {
#if 0   /* direct compression function, for occasional comparison */
                            ZSTD_parameters const params = ZSTD_getParams(cLevel, blockTable[blockNb].srcSize, dictBufferSize);
                            blockTable[blockNb].cSize = ZSTD_compress_advanced(ctx,
                                                            blockTable[blockNb].cPtr, blockTable[blockNb].cRoom,
                                                            blockTable[blockNb].srcPtr, blockTable[blockNb].srcSize,
                                                            dictBuffer, dictBufferSize,
                                                            params);
#else
                            size_t moreToFlush = 1;
                            ZSTD_outBuffer out;
                            ZSTD_inBuffer in;
                            in.src = blockTable[blockNb].srcPtr;
                            in.size = blockTable[blockNb].srcSize;
                            in.pos = 0;
                            out.dst = blockTable[blockNb].cPtr;
                            out.size = blockTable[blockNb].cRoom;
                            out.pos = 0;
                            while (moreToFlush) {
                                moreToFlush = ZSTD_compress_generic(ctx,
                                                    &out, &in, ZSTD_e_end);
                                if (ZSTD_isError(moreToFlush))
                                    EXM_THROW(1, "ZSTD_compress_generic() error : %s",
                                                ZSTD_getErrorName(moreToFlush));
                            }
                            blockTable[blockNb].cSize = out.pos;
#endif
                    }   }
                    {   U64 const loopDuration = UTIL_clockSpanNano(clockStart);
                        if (loopDuration > 0) {
                            if (loopDuration < fastestC * nbCompressionLoops)
                                fastestC = loopDuration / nbCompressionLoops;
                            nbCompressionLoops = (U32)(TIMELOOP_NANOSEC / fastestC) + 1;
                        } else {
                            assert(nbCompressionLoops < 40000000);  /* avoid overflow */
                            nbCompressionLoops *= 100;
                        }
                        totalCTime += loopDuration;
                        cCompleted = (totalCTime >= maxTime);  /* end compression tests */
                }   }

                cSize = 0;
                { U32 blockNb; for (blockNb=0; blockNb<nbBlocks; blockNb++) cSize += blockTable[blockNb].cSize; }
                ratio = (double)srcSize / (double)cSize;
                markNb = (markNb+1) % NB_MARKS;
                {   int const ratioAccuracy = (ratio < 10.) ? 3 : 2;
                    double const compressionSpeed = ((double)srcSize / fastestC) * 1000;
                    int const cSpeedAccuracy = (compressionSpeed < 10.) ? 2 : 1;
                    DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->%10u (%5.*f),%6.*f MB/s\r",
                            marks[markNb], displayName, (U32)srcSize, (U32)cSize,
                            ratioAccuracy, ratio,
                            cSpeedAccuracy, compressionSpeed );
                }
            }  /* if (!g_decodeOnly) */

#if 0       /* disable decompression test */
            dCompleted=1;
            (void)totalDTime; (void)fastestD; (void)crcOrig;   /* unused when decompression disabled */
#else
            /* Decompression */
            if (!dCompleted) memset(resultBuffer, 0xD6, srcSize);  /* warm result buffer */

            UTIL_sleepMilli(5); /* give processor time to other processes */
            UTIL_waitForNextTick();

            if (!dCompleted) {
                U32 nbLoops = 0;
                ZSTD_DDict* const ddict = ZSTD_createDDict(dictBuffer, dictBufferSize);
                UTIL_time_t const clockStart = UTIL_getTime();
                if (!ddict) EXM_THROW(2, "ZSTD_createDDict() allocation failure");
                if (!g_nbSeconds) nbDecodeLoops = 1;
                for (nbLoops=0; nbLoops < nbDecodeLoops; nbLoops++) {
                    U32 blockNb;
                    for (blockNb=0; blockNb<nbBlocks; blockNb++) {
                        size_t const regenSize = ZSTD_decompress_usingDDict(dctx,
                            blockTable[blockNb].resPtr, blockTable[blockNb].resSize,
                            blockTable[blockNb].cPtr, blockTable[blockNb].cSize,
                            ddict);
                        if (ZSTD_isError(regenSize)) {
                            EXM_THROW(2, "ZSTD_decompress_usingDDict() failed on block %u of size %u : %s  \n",
                                      blockNb, (U32)blockTable[blockNb].cSize, ZSTD_getErrorName(regenSize));
                        }
                        blockTable[blockNb].resSize = regenSize;
                }   }
                ZSTD_freeDDict(ddict);
                {   U64 const loopDuration = UTIL_clockSpanNano(clockStart);
                    if (loopDuration > 0) {
                        if (loopDuration < fastestD * nbDecodeLoops)
                            fastestD = loopDuration / nbDecodeLoops;
                        nbDecodeLoops = (U32)(TIMELOOP_NANOSEC / fastestD) + 1;
                    } else {
                        assert(nbDecodeLoops < 40000000);  /* avoid overflow */
                        nbDecodeLoops *= 100;
                    }
                    totalDTime += loopDuration;
                    dCompleted = (totalDTime >= maxTime);
            }   }

            markNb = (markNb+1) % NB_MARKS;
            {   int const ratioAccuracy = (ratio < 10.) ? 3 : 2;
                double const compressionSpeed = ((double)srcSize / fastestC) * 1000;
                int const cSpeedAccuracy = (compressionSpeed < 10.) ? 2 : 1;
                double const decompressionSpeed = ((double)srcSize / fastestD) * 1000;
                DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->%10u (%5.*f),%6.*f MB/s ,%6.1f MB/s \r",
                        marks[markNb], displayName, (U32)srcSize, (U32)cSize,
                        ratioAccuracy, ratio,
                        cSpeedAccuracy, compressionSpeed,
                        decompressionSpeed);
            }

            /* CRC Checking */
            {   U64 const crcCheck = XXH64(resultBuffer, srcSize, 0);
                if (!g_decodeOnly && (crcOrig!=crcCheck)) {
                    size_t u;
                    DISPLAY("!!! WARNING !!! %14s : Invalid Checksum : %x != %x   \n", displayName, (unsigned)crcOrig, (unsigned)crcCheck);
                    for (u=0; u<srcSize; u++) {
                        if (((const BYTE*)srcBuffer)[u] != ((const BYTE*)resultBuffer)[u]) {
                            U32 segNb, bNb, pos;
                            size_t bacc = 0;
                            DISPLAY("Decoding error at pos %u ", (U32)u);
                            for (segNb = 0; segNb < nbBlocks; segNb++) {
                                if (bacc + blockTable[segNb].srcSize > u) break;
                                bacc += blockTable[segNb].srcSize;
                            }
                            pos = (U32)(u - bacc);
                            bNb = pos / (128 KB);
                            DISPLAY("(sample %u, block %u, pos %u) \n", segNb, bNb, pos);
                            if (u>5) {
                                int n;
                                DISPLAY("origin: ");
                                for (n=-5; n<0; n++) DISPLAY("%02X ", ((const BYTE*)srcBuffer)[u+n]);
                                DISPLAY(" :%02X:  ", ((const BYTE*)srcBuffer)[u]);
                                for (n=1; n<3; n++) DISPLAY("%02X ", ((const BYTE*)srcBuffer)[u+n]);
                                DISPLAY(" \n");
                                DISPLAY("decode: ");
                                for (n=-5; n<0; n++) DISPLAY("%02X ", ((const BYTE*)resultBuffer)[u+n]);
                                DISPLAY(" :%02X:  ", ((const BYTE*)resultBuffer)[u]);
                                for (n=1; n<3; n++) DISPLAY("%02X ", ((const BYTE*)resultBuffer)[u+n]);
                                DISPLAY(" \n");
                            }
                            break;
                        }
                        if (u==srcSize-1) {  /* should never happen */
                            DISPLAY("no difference detected\n");
                    }   }
                    break;
            }   }   /* CRC Checking */
#endif
        }   /* for (testNb = 1; testNb <= (g_nbSeconds + !g_nbSeconds); testNb++) */

        if (g_displayLevel == 1) {   /* hidden display mode -q, used by python speed benchmark */
            double const cSpeed = ((double)srcSize / fastestC) * 1000;
            double const dSpeed = ((double)srcSize / fastestD) * 1000;
            if (g_additionalParam)
                DISPLAY("-%-3i%11i (%5.3f) %6.2f MB/s %6.1f MB/s  %s (param=%d)\n", cLevel, (int)cSize, ratio, cSpeed, dSpeed, displayName, g_additionalParam);
            else
                DISPLAY("-%-3i%11i (%5.3f) %6.2f MB/s %6.1f MB/s  %s\n", cLevel, (int)cSize, ratio, cSpeed, dSpeed, displayName);
        }
        DISPLAYLEVEL(2, "%2i#\n", cLevel);
    }   /* Bench */

    /* clean up */
    free(blockTable);
    free(compressedBuffer);
    free(resultBuffer);
    ZSTD_freeCCtx(ctx);
    ZSTD_freeDCtx(dctx);
    return 0;
}


static size_t BMK_findMaxMem(U64 requiredMem)
{
    size_t const step = 64 MB;
    BYTE* testmem = NULL;

    requiredMem = (((requiredMem >> 26) + 1) << 26);
    requiredMem += step;
    if (requiredMem > maxMemory) requiredMem = maxMemory;

    do {
        testmem = (BYTE*)malloc((size_t)requiredMem);
        requiredMem -= step;
    } while (!testmem);

    free(testmem);
    return (size_t)(requiredMem);
}

static void BMK_benchCLevel(const void* srcBuffer, size_t benchedSize,
                            const char* displayName, int cLevel, int cLevelLast,
                            const size_t* fileSizes, unsigned nbFiles,
                            const void* dictBuffer, size_t dictBufferSize,
                            const ZSTD_compressionParameters* const compressionParams)
{
    int l;

    const char* pch = strrchr(displayName, '\\'); /* Windows */
    if (!pch) pch = strrchr(displayName, '/'); /* Linux */
    if (pch) displayName = pch+1;

    if (g_realTime) {
        DISPLAYLEVEL(2, "Note : switching to real-time priority \n");
        SET_REALTIME_PRIORITY;
    }

    if (g_displayLevel == 1 && !g_additionalParam)
        DISPLAY("bench %s %s: input %u bytes, %u seconds, %u KB blocks\n", ZSTD_VERSION_STRING, ZSTD_GIT_COMMIT_STRING, (U32)benchedSize, g_nbSeconds, (U32)(g_blockSize>>10));

    for (l=cLevel; l <= cLevelLast; l++) {
        if (l==0) continue;  /* skip level 0 */
        BMK_benchMem(srcBuffer, benchedSize,
                     displayName, l,
                     fileSizes, nbFiles,
                     dictBuffer, dictBufferSize, compressionParams);
    }
}


/*! BMK_loadFiles() :
 *  Loads `buffer` with content of files listed within `fileNamesTable`.
 *  At most, fills `buffer` entirely. */
static void BMK_loadFiles(void* buffer, size_t bufferSize,
                          size_t* fileSizes,
                          const char* const * const fileNamesTable, unsigned nbFiles)
{
    size_t pos = 0, totalSize = 0;
    unsigned n;
    for (n=0; n<nbFiles; n++) {
        FILE* f;
        U64 fileSize = UTIL_getFileSize(fileNamesTable[n]);
        if (UTIL_isDirectory(fileNamesTable[n])) {
            DISPLAYLEVEL(2, "Ignoring %s directory...       \n", fileNamesTable[n]);
            fileSizes[n] = 0;
            continue;
        }
        if (fileSize == UTIL_FILESIZE_UNKNOWN) {
            DISPLAYLEVEL(2, "Cannot evaluate size of %s, ignoring ... \n", fileNamesTable[n]);
            fileSizes[n] = 0;
            continue;
        }
        f = fopen(fileNamesTable[n], "rb");
        if (f==NULL) EXM_THROW(10, "impossible to open file %s", fileNamesTable[n]);
        DISPLAYUPDATE(2, "Loading %s...       \r", fileNamesTable[n]);
        if (fileSize > bufferSize-pos) fileSize = bufferSize-pos, nbFiles=n;   /* buffer too small - stop after this file */
        { size_t const readSize = fread(((char*)buffer)+pos, 1, (size_t)fileSize, f);
          if (readSize != (size_t)fileSize) EXM_THROW(11, "could not read %s", fileNamesTable[n]);
          pos += readSize; }
        fileSizes[n] = (size_t)fileSize;
        totalSize += (size_t)fileSize;
        fclose(f);
    }

    if (totalSize == 0) EXM_THROW(12, "no data to bench");
}

static void BMK_benchFileTable(const char* const * const fileNamesTable, unsigned const nbFiles,
                               const char* const dictFileName,
                               int const cLevel, int const cLevelLast,
                               const ZSTD_compressionParameters* const compressionParams)
{
    void* srcBuffer;
    size_t benchedSize;
    void* dictBuffer = NULL;
    size_t dictBufferSize = 0;
    size_t* const fileSizes = (size_t*)malloc(nbFiles * sizeof(size_t));
    U64 const totalSizeToLoad = UTIL_getTotalFileSize(fileNamesTable, nbFiles);

    if (!fileSizes) EXM_THROW(12, "not enough memory for fileSizes");

    /* Load dictionary */
    if (dictFileName != NULL) {
        U64 const dictFileSize = UTIL_getFileSize(dictFileName);
        if (dictFileSize > 64 MB)
            EXM_THROW(10, "dictionary file %s too large", dictFileName);
        dictBufferSize = (size_t)dictFileSize;
        dictBuffer = malloc(dictBufferSize);
        if (dictBuffer==NULL)
            EXM_THROW(11, "not enough memory for dictionary (%u bytes)",
                            (U32)dictBufferSize);
        BMK_loadFiles(dictBuffer, dictBufferSize, fileSizes, &dictFileName, 1);
    }

    /* Memory allocation & restrictions */
    benchedSize = BMK_findMaxMem(totalSizeToLoad * 3) / 3;
    if ((U64)benchedSize > totalSizeToLoad) benchedSize = (size_t)totalSizeToLoad;
    if (benchedSize < totalSizeToLoad)
        DISPLAY("Not enough memory; testing %u MB only...\n", (U32)(benchedSize >> 20));
    srcBuffer = malloc(benchedSize);
    if (!srcBuffer) EXM_THROW(12, "not enough memory");

    /* Load input buffer */
    BMK_loadFiles(srcBuffer, benchedSize, fileSizes, fileNamesTable, nbFiles);

    /* Bench */
    if (g_separateFiles) {
        const BYTE* srcPtr = (const BYTE*)srcBuffer;
        U32 fileNb;
        for (fileNb=0; fileNb<nbFiles; fileNb++) {
            size_t const fileSize = fileSizes[fileNb];
            BMK_benchCLevel(srcPtr, fileSize,
                            fileNamesTable[fileNb], cLevel, cLevelLast,
                            fileSizes+fileNb, 1,
                            dictBuffer, dictBufferSize, compressionParams);
            srcPtr += fileSize;
        }
    } else {
        char mfName[20] = {0};
        snprintf (mfName, sizeof(mfName), " %u files", nbFiles);
        {   const char* const displayName = (nbFiles > 1) ? mfName : fileNamesTable[0];
            BMK_benchCLevel(srcBuffer, benchedSize,
                            displayName, cLevel, cLevelLast,
                            fileSizes, nbFiles,
                            dictBuffer, dictBufferSize, compressionParams);
    }   }

    /* clean up */
    free(srcBuffer);
    free(dictBuffer);
    free(fileSizes);
}


static void BMK_syntheticTest(int cLevel, int cLevelLast, double compressibility,
                              const ZSTD_compressionParameters* compressionParams)
{
    char name[20] = {0};
    size_t benchedSize = 10000000;
    void* const srcBuffer = malloc(benchedSize);

    /* Memory allocation */
    if (!srcBuffer) EXM_THROW(21, "not enough memory");

    /* Fill input buffer */
    RDG_genBuffer(srcBuffer, benchedSize, compressibility, 0.0, 0);

    /* Bench */
    snprintf (name, sizeof(name), "Synthetic %2u%%", (unsigned)(compressibility*100));
    BMK_benchCLevel(srcBuffer, benchedSize, name, cLevel, cLevelLast, &benchedSize, 1, NULL, 0, compressionParams);

    /* clean up */
    free(srcBuffer);
}


int BMK_benchFiles(const char** fileNamesTable, unsigned nbFiles,
                   const char* dictFileName,
                   int cLevel, int cLevelLast,
                   const ZSTD_compressionParameters* compressionParams)
{
    double const compressibility = (double)g_compressibilityDefault / 100;

    if (cLevel > ZSTD_maxCLevel()) cLevel = ZSTD_maxCLevel();
    if (cLevelLast > ZSTD_maxCLevel()) cLevelLast = ZSTD_maxCLevel();
    if (cLevelLast < cLevel) cLevelLast = cLevel;
    if (cLevelLast > cLevel)
        DISPLAYLEVEL(2, "Benchmarking levels from %d to %d\n", cLevel, cLevelLast);

    if (nbFiles == 0)
        BMK_syntheticTest(cLevel, cLevelLast, compressibility, compressionParams);
    else
        BMK_benchFileTable(fileNamesTable, nbFiles, dictFileName, cLevel, cLevelLast, compressionParams);
    return 0;
}