FreeBSD kernel libkern code
muldi3.c
Go to the documentation of this file.
1 /* $NetBSD: muldi3.c,v 1.8 2003/08/07 16:32:09 agc Exp $ */
2 
3 /*-
4  * Copyright (c) 1992, 1993
5  * The Regents of the University of California. All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  * notice, this list of conditions and the following disclaimer in the
18  * documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  * may be used to endorse or promote products derived from this software
21  * without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 #include <sys/cdefs.h>
37 #if defined(LIBC_SCCS) && !defined(lint)
38 #if 0
39 static char sccsid[] = "@(#)muldi3.c 8.1 (Berkeley) 6/4/93";
40 #else
41 __FBSDID("$BSDSUniX$");
42 #endif
43 #endif /* LIBC_SCCS and not lint */
44 
45 #include <libkern/quad.h>
46 
47 /*
48  * Multiply two quads.
49  *
50  * Our algorithm is based on the following. Split incoming quad values
51  * u and v (where u,v >= 0) into
52  *
53  * u = 2^n u1 * u0 (n = number of bits in `u_int', usu. 32)
54  *
55  * and
56  *
57  * v = 2^n v1 * v0
58  *
59  * Then
60  *
61  * uv = 2^2n u1 v1 + 2^n u1 v0 + 2^n v1 u0 + u0 v0
62  * = 2^2n u1 v1 + 2^n (u1 v0 + v1 u0) + u0 v0
63  *
64  * Now add 2^n u1 v1 to the first term and subtract it from the middle,
65  * and add 2^n u0 v0 to the last term and subtract it from the middle.
66  * This gives:
67  *
68  * uv = (2^2n + 2^n) (u1 v1) +
69  * (2^n) (u1 v0 - u1 v1 + u0 v1 - u0 v0) +
70  * (2^n + 1) (u0 v0)
71  *
72  * Factoring the middle a bit gives us:
73  *
74  * uv = (2^2n + 2^n) (u1 v1) + [u1v1 = high]
75  * (2^n) (u1 - u0) (v0 - v1) + [(u1-u0)... = mid]
76  * (2^n + 1) (u0 v0) [u0v0 = low]
77  *
78  * The terms (u1 v1), (u1 - u0) (v0 - v1), and (u0 v0) can all be done
79  * in just half the precision of the original. (Note that either or both
80  * of (u1 - u0) or (v0 - v1) may be negative.)
81  *
82  * This algorithm is from Knuth vol. 2 (2nd ed), section 4.3.3, p. 278.
83  *
84  * Since C does not give us a `int * int = quad' operator, we split
85  * our input quads into two ints, then split the two ints into two
86  * shorts. We can then calculate `short * short = int' in native
87  * arithmetic.
88  *
89  * Our product should, strictly speaking, be a `long quad', with 128
90  * bits, but we are going to discard the upper 64. In other words,
91  * we are not interested in uv, but rather in (uv mod 2^2n). This
92  * makes some of the terms above vanish, and we get:
93  *
94  * (2^n)(high) + (2^n)(mid) + (2^n + 1)(low)
95  *
96  * or
97  *
98  * (2^n)(high + mid + low) + low
99  *
100  * Furthermore, `high' and `mid' can be computed mod 2^n, as any factor
101  * of 2^n in either one will also vanish. Only `low' need be computed
102  * mod 2^2n, and only because of the final term above.
103  */
104 static quad_t __lmulq(u_int, u_int);
105 
106 quad_t __muldi3(quad_t, quad_t);
107 quad_t
108 __muldi3(quad_t a, quad_t b)
109 {
110  union uu u, v, low, prod;
111  u_int high, mid, udiff, vdiff;
112  int negall, negmid;
113 #define u1 u.ul[H]
114 #define u0 u.ul[L]
115 #define v1 v.ul[H]
116 #define v0 v.ul[L]
117 
118  /*
119  * Get u and v such that u, v >= 0. When this is finished,
120  * u1, u0, v1, and v0 will be directly accessible through the
121  * int fields.
122  */
123  if (a >= 0)
124  u.q = a, negall = 0;
125  else
126  u.q = -a, negall = 1;
127  if (b >= 0)
128  v.q = b;
129  else
130  v.q = -b, negall ^= 1;
131 
132  if (u1 == 0 && v1 == 0) {
133  /*
134  * An (I hope) important optimization occurs when u1 and v1
135  * are both 0. This should be common since most numbers
136  * are small. Here the product is just u0*v0.
137  */
138  prod.q = __lmulq(u0, v0);
139  } else {
140  /*
141  * Compute the three intermediate products, remembering
142  * whether the middle term is negative. We can discard
143  * any upper bits in high and mid, so we can use native
144  * u_int * u_int => u_int arithmetic.
145  */
146  low.q = __lmulq(u0, v0);
147 
148  if (u1 >= u0)
149  negmid = 0, udiff = u1 - u0;
150  else
151  negmid = 1, udiff = u0 - u1;
152  if (v0 >= v1)
153  vdiff = v0 - v1;
154  else
155  vdiff = v1 - v0, negmid ^= 1;
156  mid = udiff * vdiff;
157 
158  high = u1 * v1;
159 
160  /*
161  * Assemble the final product.
162  */
163  prod.ul[H] = high + (negmid ? -mid : mid) + low.ul[L] +
164  low.ul[H];
165  prod.ul[L] = low.ul[L];
166  }
167  return (negall ? -prod.q : prod.q);
168 #undef u1
169 #undef u0
170 #undef v1
171 #undef v0
172 }
173 
174 /*
175  * Multiply two 2N-bit ints to produce a 4N-bit quad, where N is half
176  * the number of bits in an int (whatever that is---the code below
177  * does not care as long as quad.h does its part of the bargain---but
178  * typically N==16).
179  *
180  * We use the same algorithm from Knuth, but this time the modulo refinement
181  * does not apply. On the other hand, since N is half the size of an int,
182  * we can get away with native multiplication---none of our input terms
183  * exceeds (UINT_MAX >> 1).
184  *
185  * Note that, for u_int l, the quad-precision result
186  *
187  * l << N
188  *
189  * splits into high and low ints as HHALF(l) and LHUP(l) respectively.
190  */
191 static quad_t
192 __lmulq(u_int u, u_int v)
193 {
194  u_int u1, u0, v1, v0, udiff, vdiff, high, mid, low;
195  u_int prodh, prodl, was;
196  union uu prod;
197  int neg;
198 
199  u1 = HHALF(u);
200  u0 = LHALF(u);
201  v1 = HHALF(v);
202  v0 = LHALF(v);
203 
204  low = u0 * v0;
205 
206  /* This is the same small-number optimization as before. */
207  if (u1 == 0 && v1 == 0)
208  return (low);
209 
210  if (u1 >= u0)
211  udiff = u1 - u0, neg = 0;
212  else
213  udiff = u0 - u1, neg = 1;
214  if (v0 >= v1)
215  vdiff = v0 - v1;
216  else
217  vdiff = v1 - v0, neg ^= 1;
218  mid = udiff * vdiff;
219 
220  high = u1 * v1;
221 
222  /* prod = (high << 2N) + (high << N); */
223  prodh = high + HHALF(high);
224  prodl = LHUP(high);
225 
226  /* if (neg) prod -= mid << N; else prod += mid << N; */
227  if (neg) {
228  was = prodl;
229  prodl -= LHUP(mid);
230  prodh -= HHALF(mid) + (prodl > was);
231  } else {
232  was = prodl;
233  prodl += LHUP(mid);
234  prodh += HHALF(mid) + (prodl < was);
235  }
236 
237  /* prod += low << N */
238  was = prodl;
239  prodl += LHUP(low);
240  prodh += HHALF(low) + (prodl < was);
241  /* ... + low; */
242  if ((prodl += low) < low)
243  prodh++;
244 
245  /* return 4N-bit product */
246  prod.ul[H] = prodh;
247  prod.ul[L] = prodl;
248  return (prod.q);
249 }
Definition: quad.h:65
#define H
Definition: quad.h:75
u_long ul[2]
Definition: quad.h:69
#define LHUP(x)
Definition: quad.h:98
#define LHALF(x)
Definition: quad.h:97
__FBSDID("$BSDSUniX$")
static quad_t __lmulq(u_int, u_int)
Definition: muldi3.c:192
quad_t __muldi3(quad_t, quad_t)
Definition: muldi3.c:108
#define u0
#define L
Definition: quad.h:76
#define HHALF(x)
Definition: quad.h:96
quad_t q
Definition: quad.h:66
#define u1
#define v0
#define v1