FreeBSD kernel kern code
kern_ntptime.c
Go to the documentation of this file.
1 /*-
2  ***********************************************************************
3  * *
4  * Copyright (c) David L. Mills 1993-2001 *
5  * *
6  * Permission to use, copy, modify, and distribute this software and *
7  * its documentation for any purpose and without fee is hereby *
8  * granted, provided that the above copyright notice appears in all *
9  * copies and that both the copyright notice and this permission *
10  * notice appear in supporting documentation, and that the name *
11  * University of Delaware not be used in advertising or publicity *
12  * pertaining to distribution of the software without specific, *
13  * written prior permission. The University of Delaware makes no *
14  * representations about the suitability this software for any *
15  * purpose. It is provided "as is" without express or implied *
16  * warranty. *
17  * *
18  **********************************************************************/
19 
20 /*
21  * Adapted from the original sources for FreeBSD and timecounters by:
22  * Poul-Henning Kamp <phk@FreeBSD.org>.
23  *
24  * The 32bit version of the "LP" macros seems a bit past its "sell by"
25  * date so I have retained only the 64bit version and included it directly
26  * in this file.
27  *
28  * Only minor changes done to interface with the timecounters over in
29  * sys/kern/kern_clock.c. Some of the comments below may be (even more)
30  * confusing and/or plain wrong in that context.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$BSDSUniX$");
35 
36 #include "opt_ntp.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/sysproto.h>
41 #include <sys/eventhandler.h>
42 #include <sys/kernel.h>
43 #include <sys/priv.h>
44 #include <sys/proc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/time.h>
48 #include <sys/timex.h>
49 #include <sys/timetc.h>
50 #include <sys/timepps.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/sysctl.h>
53 
54 #ifdef PPS_SYNC
55 FEATURE(pps_sync, "Support usage of external PPS signal by kernel PLL");
56 #endif
57 
58 /*
59  * Single-precision macros for 64-bit machines
60  */
61 typedef int64_t l_fp;
62 #define L_ADD(v, u) ((v) += (u))
63 #define L_SUB(v, u) ((v) -= (u))
64 #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
65 #define L_NEG(v) ((v) = -(v))
66 #define L_RSHIFT(v, n) \
67  do { \
68  if ((v) < 0) \
69  (v) = -(-(v) >> (n)); \
70  else \
71  (v) = (v) >> (n); \
72  } while (0)
73 #define L_MPY(v, a) ((v) *= (a))
74 #define L_CLR(v) ((v) = 0)
75 #define L_ISNEG(v) ((v) < 0)
76 #define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
77 #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
78 
79 /*
80  * Generic NTP kernel interface
81  *
82  * These routines constitute the Network Time Protocol (NTP) interfaces
83  * for user and daemon application programs. The ntp_gettime() routine
84  * provides the time, maximum error (synch distance) and estimated error
85  * (dispersion) to client user application programs. The ntp_adjtime()
86  * routine is used by the NTP daemon to adjust the system clock to an
87  * externally derived time. The time offset and related variables set by
88  * this routine are used by other routines in this module to adjust the
89  * phase and frequency of the clock discipline loop which controls the
90  * system clock.
91  *
92  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
93  * defined), the time at each tick interrupt is derived directly from
94  * the kernel time variable. When the kernel time is reckoned in
95  * microseconds, (NTP_NANO undefined), the time is derived from the
96  * kernel time variable together with a variable representing the
97  * leftover nanoseconds at the last tick interrupt. In either case, the
98  * current nanosecond time is reckoned from these values plus an
99  * interpolated value derived by the clock routines in another
100  * architecture-specific module. The interpolation can use either a
101  * dedicated counter or a processor cycle counter (PCC) implemented in
102  * some architectures.
103  *
104  * Note that all routines must run at priority splclock or higher.
105  */
106 /*
107  * Phase/frequency-lock loop (PLL/FLL) definitions
108  *
109  * The nanosecond clock discipline uses two variable types, time
110  * variables and frequency variables. Both types are represented as 64-
111  * bit fixed-point quantities with the decimal point between two 32-bit
112  * halves. On a 32-bit machine, each half is represented as a single
113  * word and mathematical operations are done using multiple-precision
114  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
115  * used.
116  *
117  * A time variable is a signed 64-bit fixed-point number in ns and
118  * fraction. It represents the remaining time offset to be amortized
119  * over succeeding tick interrupts. The maximum time offset is about
120  * 0.5 s and the resolution is about 2.3e-10 ns.
121  *
122  * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
123  * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
124  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
125  * |s s s| ns |
126  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
127  * | fraction |
128  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129  *
130  * A frequency variable is a signed 64-bit fixed-point number in ns/s
131  * and fraction. It represents the ns and fraction to be added to the
132  * kernel time variable at each second. The maximum frequency offset is
133  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
134  *
135  * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
136  * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
137  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
138  * |s s s s s s s s s s s s s| ns/s |
139  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
140  * | fraction |
141  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
142  */
143 /*
144  * The following variables establish the state of the PLL/FLL and the
145  * residual time and frequency offset of the local clock.
146  */
147 #define SHIFT_PLL 4 /* PLL loop gain (shift) */
148 #define SHIFT_FLL 2 /* FLL loop gain (shift) */
149 
150 static int time_state = TIME_OK; /* clock state */
151 static int time_status = STA_UNSYNC; /* clock status bits */
152 static long time_tai; /* TAI offset (s) */
153 static long time_monitor; /* last time offset scaled (ns) */
154 static long time_constant; /* poll interval (shift) (s) */
155 static long time_precision = 1; /* clock precision (ns) */
156 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
157 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
158 static long time_reftime; /* time at last adjustment (s) */
159 static l_fp time_offset; /* time offset (ns) */
160 static l_fp time_freq; /* frequency offset (ns/s) */
161 static l_fp time_adj; /* tick adjust (ns/s) */
162 
163 static int64_t time_adjtime; /* correction from adjtime(2) (usec) */
164 
165 #ifdef PPS_SYNC
166 /*
167  * The following variables are used when a pulse-per-second (PPS) signal
168  * is available and connected via a modem control lead. They establish
169  * the engineering parameters of the clock discipline loop when
170  * controlled by the PPS signal.
171  */
172 #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
173 #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
174 #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
175 #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
176 #define PPS_VALID 120 /* PPS signal watchdog max (s) */
177 #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
178 #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
179 
180 static struct timespec pps_tf[3]; /* phase median filter */
181 static l_fp pps_freq; /* scaled frequency offset (ns/s) */
182 static long pps_fcount; /* frequency accumulator */
183 static long pps_jitter; /* nominal jitter (ns) */
184 static long pps_stabil; /* nominal stability (scaled ns/s) */
185 static long pps_lastsec; /* time at last calibration (s) */
186 static int pps_valid; /* signal watchdog counter */
187 static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
188 static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
189 static int pps_intcnt; /* wander counter */
190 
191 /*
192  * PPS signal quality monitors
193  */
194 static long pps_calcnt; /* calibration intervals */
195 static long pps_jitcnt; /* jitter limit exceeded */
196 static long pps_stbcnt; /* stability limit exceeded */
197 static long pps_errcnt; /* calibration errors */
198 #endif /* PPS_SYNC */
199 /*
200  * End of phase/frequency-lock loop (PLL/FLL) definitions
201  */
202 
203 static void ntp_init(void);
204 static void hardupdate(long offset);
205 static void ntp_gettime1(struct ntptimeval *ntvp);
206 static int ntp_is_time_error(void);
207 
208 static int
210 {
211  /*
212  * Status word error decode. If any of these conditions occur,
213  * an error is returned, instead of the status word. Most
214  * applications will care only about the fact the system clock
215  * may not be trusted, not about the details.
216  *
217  * Hardware or software error
218  */
219  if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
220 
221  /*
222  * PPS signal lost when either time or frequency synchronization
223  * requested
224  */
225  (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
226  !(time_status & STA_PPSSIGNAL)) ||
227 
228  /*
229  * PPS jitter exceeded when time synchronization requested
230  */
231  (time_status & STA_PPSTIME &&
232  time_status & STA_PPSJITTER) ||
233 
234  /*
235  * PPS wander exceeded or calibration error when frequency
236  * synchronization requested
237  */
238  (time_status & STA_PPSFREQ &&
239  time_status & (STA_PPSWANDER | STA_PPSERROR)))
240  return (1);
241 
242  return (0);
243 }
244 
245 static void
246 ntp_gettime1(struct ntptimeval *ntvp)
247 {
248  struct timespec atv; /* nanosecond time */
249 
250  GIANT_REQUIRED;
251 
252  nanotime(&atv);
253  ntvp->time.tv_sec = atv.tv_sec;
254  ntvp->time.tv_nsec = atv.tv_nsec;
255  ntvp->maxerror = time_maxerror;
256  ntvp->esterror = time_esterror;
257  ntvp->tai = time_tai;
258  ntvp->time_state = time_state;
259 
260  if (ntp_is_time_error())
261  ntvp->time_state = TIME_ERROR;
262 }
263 
264 /*
265  * ntp_gettime() - NTP user application interface
266  *
267  * See the timex.h header file for synopsis and API description. Note that
268  * the TAI offset is returned in the ntvtimeval.tai structure member.
269  */
270 #ifndef _SYS_SYSPROTO_H_
272  struct ntptimeval *ntvp;
273 };
274 #endif
275 /* ARGSUSED */
276 int
277 sys_ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
278 {
279  struct ntptimeval ntv;
280 
281  mtx_lock(&Giant);
282  ntp_gettime1(&ntv);
283  mtx_unlock(&Giant);
284 
285  td->td_retval[0] = ntv.time_state;
286  return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
287 }
288 
289 static int
290 ntp_sysctl(SYSCTL_HANDLER_ARGS)
291 {
292  struct ntptimeval ntv; /* temporary structure */
293 
294  ntp_gettime1(&ntv);
295 
296  return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
297 }
298 
299 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
300 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
301  0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
302 
303 #ifdef PPS_SYNC
304 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
305 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
306 SYSCTL_LONG(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD,
307  &time_monitor, 0, "");
308 
309 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
310 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
311 #endif
312 
313 /*
314  * ntp_adjtime() - NTP daemon application interface
315  *
316  * See the timex.h header file for synopsis and API description. Note that
317  * the timex.constant structure member has a dual purpose to set the time
318  * constant and to set the TAI offset.
319  */
320 #ifndef _SYS_SYSPROTO_H_
322  struct timex *tp;
323 };
324 #endif
325 
326 int
327 sys_ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
328 {
329  struct timex ntv; /* temporary structure */
330  long freq; /* frequency ns/s) */
331  int modes; /* mode bits from structure */
332  int s; /* caller priority */
333  int error;
334 
335  error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
336  if (error)
337  return(error);
338 
339  /*
340  * Update selected clock variables - only the superuser can
341  * change anything. Note that there is no error checking here on
342  * the assumption the superuser should know what it is doing.
343  * Note that either the time constant or TAI offset are loaded
344  * from the ntv.constant member, depending on the mode bits. If
345  * the STA_PLL bit in the status word is cleared, the state and
346  * status words are reset to the initial values at boot.
347  */
348  mtx_lock(&Giant);
349  modes = ntv.modes;
350  if (modes)
351  error = priv_check(td, PRIV_NTP_ADJTIME);
352  if (error)
353  goto done2;
354  s = splclock();
355  if (modes & MOD_MAXERROR)
356  time_maxerror = ntv.maxerror;
357  if (modes & MOD_ESTERROR)
358  time_esterror = ntv.esterror;
359  if (modes & MOD_STATUS) {
360  if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
361  time_state = TIME_OK;
362  time_status = STA_UNSYNC;
363 #ifdef PPS_SYNC
364  pps_shift = PPS_FAVG;
365 #endif /* PPS_SYNC */
366  }
367  time_status &= STA_RONLY;
368  time_status |= ntv.status & ~STA_RONLY;
369  }
370  if (modes & MOD_TIMECONST) {
371  if (ntv.constant < 0)
372  time_constant = 0;
373  else if (ntv.constant > MAXTC)
374  time_constant = MAXTC;
375  else
376  time_constant = ntv.constant;
377  }
378  if (modes & MOD_TAI) {
379  if (ntv.constant > 0) /* XXX zero & negative numbers ? */
380  time_tai = ntv.constant;
381  }
382 #ifdef PPS_SYNC
383  if (modes & MOD_PPSMAX) {
384  if (ntv.shift < PPS_FAVG)
385  pps_shiftmax = PPS_FAVG;
386  else if (ntv.shift > PPS_FAVGMAX)
387  pps_shiftmax = PPS_FAVGMAX;
388  else
389  pps_shiftmax = ntv.shift;
390  }
391 #endif /* PPS_SYNC */
392  if (modes & MOD_NANO)
393  time_status |= STA_NANO;
394  if (modes & MOD_MICRO)
395  time_status &= ~STA_NANO;
396  if (modes & MOD_CLKB)
397  time_status |= STA_CLK;
398  if (modes & MOD_CLKA)
399  time_status &= ~STA_CLK;
400  if (modes & MOD_FREQUENCY) {
401  freq = (ntv.freq * 1000LL) >> 16;
402  if (freq > MAXFREQ)
403  L_LINT(time_freq, MAXFREQ);
404  else if (freq < -MAXFREQ)
405  L_LINT(time_freq, -MAXFREQ);
406  else {
407  /*
408  * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
409  * time_freq is [ns/s * 2^32]
410  */
411  time_freq = ntv.freq * 1000LL * 65536LL;
412  }
413 #ifdef PPS_SYNC
414  pps_freq = time_freq;
415 #endif /* PPS_SYNC */
416  }
417  if (modes & MOD_OFFSET) {
418  if (time_status & STA_NANO)
419  hardupdate(ntv.offset);
420  else
421  hardupdate(ntv.offset * 1000);
422  }
423 
424  /*
425  * Retrieve all clock variables. Note that the TAI offset is
426  * returned only by ntp_gettime();
427  */
428  if (time_status & STA_NANO)
429  ntv.offset = L_GINT(time_offset);
430  else
431  ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
432  ntv.freq = L_GINT((time_freq / 1000LL) << 16);
433  ntv.maxerror = time_maxerror;
434  ntv.esterror = time_esterror;
435  ntv.status = time_status;
436  ntv.constant = time_constant;
437  if (time_status & STA_NANO)
438  ntv.precision = time_precision;
439  else
440  ntv.precision = time_precision / 1000;
441  ntv.tolerance = MAXFREQ * SCALE_PPM;
442 #ifdef PPS_SYNC
443  ntv.shift = pps_shift;
444  ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
445  if (time_status & STA_NANO)
446  ntv.jitter = pps_jitter;
447  else
448  ntv.jitter = pps_jitter / 1000;
449  ntv.stabil = pps_stabil;
450  ntv.calcnt = pps_calcnt;
451  ntv.errcnt = pps_errcnt;
452  ntv.jitcnt = pps_jitcnt;
453  ntv.stbcnt = pps_stbcnt;
454 #endif /* PPS_SYNC */
455  splx(s);
456 
457  error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
458  if (error)
459  goto done2;
460 
461  if (ntp_is_time_error())
462  td->td_retval[0] = TIME_ERROR;
463  else
464  td->td_retval[0] = time_state;
465 
466 done2:
467  mtx_unlock(&Giant);
468  return (error);
469 }
470 
471 /*
472  * second_overflow() - called after ntp_tick_adjust()
473  *
474  * This routine is ordinarily called immediately following the above
475  * routine ntp_tick_adjust(). While these two routines are normally
476  * combined, they are separated here only for the purposes of
477  * simulation.
478  */
479 void
480 ntp_update_second(int64_t *adjustment, time_t *newsec)
481 {
482  int tickrate;
483  l_fp ftemp; /* 32/64-bit temporary */
484 
485  /*
486  * On rollover of the second both the nanosecond and microsecond
487  * clocks are updated and the state machine cranked as
488  * necessary. The phase adjustment to be used for the next
489  * second is calculated and the maximum error is increased by
490  * the tolerance.
491  */
492  time_maxerror += MAXFREQ / 1000;
493 
494  /*
495  * Leap second processing. If in leap-insert state at
496  * the end of the day, the system clock is set back one
497  * second; if in leap-delete state, the system clock is
498  * set ahead one second. The nano_time() routine or
499  * external clock driver will insure that reported time
500  * is always monotonic.
501  */
502  switch (time_state) {
503 
504  /*
505  * No warning.
506  */
507  case TIME_OK:
508  if (time_status & STA_INS)
509  time_state = TIME_INS;
510  else if (time_status & STA_DEL)
511  time_state = TIME_DEL;
512  break;
513 
514  /*
515  * Insert second 23:59:60 following second
516  * 23:59:59.
517  */
518  case TIME_INS:
519  if (!(time_status & STA_INS))
520  time_state = TIME_OK;
521  else if ((*newsec) % 86400 == 0) {
522  (*newsec)--;
523  time_state = TIME_OOP;
524  time_tai++;
525  }
526  break;
527 
528  /*
529  * Delete second 23:59:59.
530  */
531  case TIME_DEL:
532  if (!(time_status & STA_DEL))
533  time_state = TIME_OK;
534  else if (((*newsec) + 1) % 86400 == 0) {
535  (*newsec)++;
536  time_tai--;
537  time_state = TIME_WAIT;
538  }
539  break;
540 
541  /*
542  * Insert second in progress.
543  */
544  case TIME_OOP:
545  time_state = TIME_WAIT;
546  break;
547 
548  /*
549  * Wait for status bits to clear.
550  */
551  case TIME_WAIT:
552  if (!(time_status & (STA_INS | STA_DEL)))
553  time_state = TIME_OK;
554  }
555 
556  /*
557  * Compute the total time adjustment for the next second
558  * in ns. The offset is reduced by a factor depending on
559  * whether the PPS signal is operating. Note that the
560  * value is in effect scaled by the clock frequency,
561  * since the adjustment is added at each tick interrupt.
562  */
563  ftemp = time_offset;
564 #ifdef PPS_SYNC
565  /* XXX even if PPS signal dies we should finish adjustment ? */
566  if (time_status & STA_PPSTIME && time_status &
567  STA_PPSSIGNAL)
568  L_RSHIFT(ftemp, pps_shift);
569  else
570  L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
571 #else
572  L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
573 #endif /* PPS_SYNC */
574  time_adj = ftemp;
575  L_SUB(time_offset, ftemp);
577 
578  /*
579  * Apply any correction from adjtime(2). If more than one second
580  * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
581  * until the last second is slewed the final < 500 usecs.
582  */
583  if (time_adjtime != 0) {
584  if (time_adjtime > 1000000)
585  tickrate = 5000;
586  else if (time_adjtime < -1000000)
587  tickrate = -5000;
588  else if (time_adjtime > 500)
589  tickrate = 500;
590  else if (time_adjtime < -500)
591  tickrate = -500;
592  else
593  tickrate = time_adjtime;
594  time_adjtime -= tickrate;
595  L_LINT(ftemp, tickrate * 1000);
596  L_ADD(time_adj, ftemp);
597  }
598  *adjustment = time_adj;
599 
600 #ifdef PPS_SYNC
601  if (pps_valid > 0)
602  pps_valid--;
603  else
604  time_status &= ~STA_PPSSIGNAL;
605 #endif /* PPS_SYNC */
606 }
607 
608 /*
609  * ntp_init() - initialize variables and structures
610  *
611  * This routine must be called after the kernel variables hz and tick
612  * are set or changed and before the next tick interrupt. In this
613  * particular implementation, these values are assumed set elsewhere in
614  * the kernel. The design allows the clock frequency and tick interval
615  * to be changed while the system is running. So, this routine should
616  * probably be integrated with the code that does that.
617  */
618 static void
620 {
621 
622  /*
623  * The following variables are initialized only at startup. Only
624  * those structures not cleared by the compiler need to be
625  * initialized, and these only in the simulator. In the actual
626  * kernel, any nonzero values here will quickly evaporate.
627  */
629  L_CLR(time_freq);
630 #ifdef PPS_SYNC
631  pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
632  pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
633  pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
634  pps_fcount = 0;
635  L_CLR(pps_freq);
636 #endif /* PPS_SYNC */
637 }
638 
639 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
640 
641 /*
642  * hardupdate() - local clock update
643  *
644  * This routine is called by ntp_adjtime() to update the local clock
645  * phase and frequency. The implementation is of an adaptive-parameter,
646  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
647  * time and frequency offset estimates for each call. If the kernel PPS
648  * discipline code is configured (PPS_SYNC), the PPS signal itself
649  * determines the new time offset, instead of the calling argument.
650  * Presumably, calls to ntp_adjtime() occur only when the caller
651  * believes the local clock is valid within some bound (+-128 ms with
652  * NTP). If the caller's time is far different than the PPS time, an
653  * argument will ensue, and it's not clear who will lose.
654  *
655  * For uncompensated quartz crystal oscillators and nominal update
656  * intervals less than 256 s, operation should be in phase-lock mode,
657  * where the loop is disciplined to phase. For update intervals greater
658  * than 1024 s, operation should be in frequency-lock mode, where the
659  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
660  * is selected by the STA_MODE status bit.
661  */
662 static void
663 hardupdate(offset)
664  long offset; /* clock offset (ns) */
665 {
666  long mtemp;
667  l_fp ftemp;
668 
669  /*
670  * Select how the phase is to be controlled and from which
671  * source. If the PPS signal is present and enabled to
672  * discipline the time, the PPS offset is used; otherwise, the
673  * argument offset is used.
674  */
675  if (!(time_status & STA_PLL))
676  return;
677  if (!(time_status & STA_PPSTIME && time_status &
678  STA_PPSSIGNAL)) {
679  if (offset > MAXPHASE)
680  time_monitor = MAXPHASE;
681  else if (offset < -MAXPHASE)
682  time_monitor = -MAXPHASE;
683  else
684  time_monitor = offset;
686  }
687 
688  /*
689  * Select how the frequency is to be controlled and in which
690  * mode (PLL or FLL). If the PPS signal is present and enabled
691  * to discipline the frequency, the PPS frequency is used;
692  * otherwise, the argument offset is used to compute it.
693  */
694  if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
696  return;
697  }
698  if (time_status & STA_FREQHOLD || time_reftime == 0)
700  mtemp = time_second - time_reftime;
701  L_LINT(ftemp, time_monitor);
702  L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
703  L_MPY(ftemp, mtemp);
704  L_ADD(time_freq, ftemp);
705  time_status &= ~STA_MODE;
706  if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
707  MAXSEC)) {
708  L_LINT(ftemp, (time_monitor << 4) / mtemp);
709  L_RSHIFT(ftemp, SHIFT_FLL + 4);
710  L_ADD(time_freq, ftemp);
711  time_status |= STA_MODE;
712  }
713  time_reftime = time_second;
714  if (L_GINT(time_freq) > MAXFREQ)
715  L_LINT(time_freq, MAXFREQ);
716  else if (L_GINT(time_freq) < -MAXFREQ)
717  L_LINT(time_freq, -MAXFREQ);
718 }
719 
720 #ifdef PPS_SYNC
721 /*
722  * hardpps() - discipline CPU clock oscillator to external PPS signal
723  *
724  * This routine is called at each PPS interrupt in order to discipline
725  * the CPU clock oscillator to the PPS signal. There are two independent
726  * first-order feedback loops, one for the phase, the other for the
727  * frequency. The phase loop measures and grooms the PPS phase offset
728  * and leaves it in a handy spot for the seconds overflow routine. The
729  * frequency loop averages successive PPS phase differences and
730  * calculates the PPS frequency offset, which is also processed by the
731  * seconds overflow routine. The code requires the caller to capture the
732  * time and architecture-dependent hardware counter values in
733  * nanoseconds at the on-time PPS signal transition.
734  *
735  * Note that, on some Unix systems this routine runs at an interrupt
736  * priority level higher than the timer interrupt routine hardclock().
737  * Therefore, the variables used are distinct from the hardclock()
738  * variables, except for the actual time and frequency variables, which
739  * are determined by this routine and updated atomically.
740  */
741 void
742 hardpps(tsp, nsec)
743  struct timespec *tsp; /* time at PPS */
744  long nsec; /* hardware counter at PPS */
745 {
746  long u_sec, u_nsec, v_nsec; /* temps */
747  l_fp ftemp;
748 
749  /*
750  * The signal is first processed by a range gate and frequency
751  * discriminator. The range gate rejects noise spikes outside
752  * the range +-500 us. The frequency discriminator rejects input
753  * signals with apparent frequency outside the range 1 +-500
754  * PPM. If two hits occur in the same second, we ignore the
755  * later hit; if not and a hit occurs outside the range gate,
756  * keep the later hit for later comparison, but do not process
757  * it.
758  */
759  time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
760  time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
761  pps_valid = PPS_VALID;
762  u_sec = tsp->tv_sec;
763  u_nsec = tsp->tv_nsec;
764  if (u_nsec >= (NANOSECOND >> 1)) {
765  u_nsec -= NANOSECOND;
766  u_sec++;
767  }
768  v_nsec = u_nsec - pps_tf[0].tv_nsec;
769  if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
770  MAXFREQ)
771  return;
772  pps_tf[2] = pps_tf[1];
773  pps_tf[1] = pps_tf[0];
774  pps_tf[0].tv_sec = u_sec;
775  pps_tf[0].tv_nsec = u_nsec;
776 
777  /*
778  * Compute the difference between the current and previous
779  * counter values. If the difference exceeds 0.5 s, assume it
780  * has wrapped around, so correct 1.0 s. If the result exceeds
781  * the tick interval, the sample point has crossed a tick
782  * boundary during the last second, so correct the tick. Very
783  * intricate.
784  */
785  u_nsec = nsec;
786  if (u_nsec > (NANOSECOND >> 1))
787  u_nsec -= NANOSECOND;
788  else if (u_nsec < -(NANOSECOND >> 1))
789  u_nsec += NANOSECOND;
790  pps_fcount += u_nsec;
791  if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
792  return;
793  time_status &= ~STA_PPSJITTER;
794 
795  /*
796  * A three-stage median filter is used to help denoise the PPS
797  * time. The median sample becomes the time offset estimate; the
798  * difference between the other two samples becomes the time
799  * dispersion (jitter) estimate.
800  */
801  if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
802  if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
803  v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
804  u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
805  } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
806  v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
807  u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
808  } else {
809  v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
810  u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
811  }
812  } else {
813  if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
814  v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
815  u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
816  } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
817  v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
818  u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
819  } else {
820  v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
821  u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
822  }
823  }
824 
825  /*
826  * Nominal jitter is due to PPS signal noise and interrupt
827  * latency. If it exceeds the popcorn threshold, the sample is
828  * discarded. otherwise, if so enabled, the time offset is
829  * updated. We can tolerate a modest loss of data here without
830  * much degrading time accuracy.
831  */
832  if (u_nsec > (pps_jitter << PPS_POPCORN)) {
833  time_status |= STA_PPSJITTER;
834  pps_jitcnt++;
835  } else if (time_status & STA_PPSTIME) {
836  time_monitor = -v_nsec;
838  }
839  pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
840  u_sec = pps_tf[0].tv_sec - pps_lastsec;
841  if (u_sec < (1 << pps_shift))
842  return;
843 
844  /*
845  * At the end of the calibration interval the difference between
846  * the first and last counter values becomes the scaled
847  * frequency. It will later be divided by the length of the
848  * interval to determine the frequency update. If the frequency
849  * exceeds a sanity threshold, or if the actual calibration
850  * interval is not equal to the expected length, the data are
851  * discarded. We can tolerate a modest loss of data here without
852  * much degrading frequency accuracy.
853  */
854  pps_calcnt++;
855  v_nsec = -pps_fcount;
856  pps_lastsec = pps_tf[0].tv_sec;
857  pps_fcount = 0;
858  u_nsec = MAXFREQ << pps_shift;
859  if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
860  pps_shift)) {
861  time_status |= STA_PPSERROR;
862  pps_errcnt++;
863  return;
864  }
865 
866  /*
867  * Here the raw frequency offset and wander (stability) is
868  * calculated. If the wander is less than the wander threshold
869  * for four consecutive averaging intervals, the interval is
870  * doubled; if it is greater than the threshold for four
871  * consecutive intervals, the interval is halved. The scaled
872  * frequency offset is converted to frequency offset. The
873  * stability metric is calculated as the average of recent
874  * frequency changes, but is used only for performance
875  * monitoring.
876  */
877  L_LINT(ftemp, v_nsec);
878  L_RSHIFT(ftemp, pps_shift);
879  L_SUB(ftemp, pps_freq);
880  u_nsec = L_GINT(ftemp);
881  if (u_nsec > PPS_MAXWANDER) {
882  L_LINT(ftemp, PPS_MAXWANDER);
883  pps_intcnt--;
884  time_status |= STA_PPSWANDER;
885  pps_stbcnt++;
886  } else if (u_nsec < -PPS_MAXWANDER) {
887  L_LINT(ftemp, -PPS_MAXWANDER);
888  pps_intcnt--;
889  time_status |= STA_PPSWANDER;
890  pps_stbcnt++;
891  } else {
892  pps_intcnt++;
893  }
894  if (pps_intcnt >= 4) {
895  pps_intcnt = 4;
896  if (pps_shift < pps_shiftmax) {
897  pps_shift++;
898  pps_intcnt = 0;
899  }
900  } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
901  pps_intcnt = -4;
902  if (pps_shift > PPS_FAVG) {
903  pps_shift--;
904  pps_intcnt = 0;
905  }
906  }
907  if (u_nsec < 0)
908  u_nsec = -u_nsec;
909  pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
910 
911  /*
912  * The PPS frequency is recalculated and clamped to the maximum
913  * MAXFREQ. If enabled, the system clock frequency is updated as
914  * well.
915  */
916  L_ADD(pps_freq, ftemp);
917  u_nsec = L_GINT(pps_freq);
918  if (u_nsec > MAXFREQ)
919  L_LINT(pps_freq, MAXFREQ);
920  else if (u_nsec < -MAXFREQ)
921  L_LINT(pps_freq, -MAXFREQ);
922  if (time_status & STA_PPSFREQ)
923  time_freq = pps_freq;
924 }
925 #endif /* PPS_SYNC */
926 
927 #ifndef _SYS_SYSPROTO_H_
928 struct adjtime_args {
929  struct timeval *delta;
930  struct timeval *olddelta;
931 };
932 #endif
933 /* ARGSUSED */
934 int
935 sys_adjtime(struct thread *td, struct adjtime_args *uap)
936 {
937  struct timeval delta, olddelta, *deltap;
938  int error;
939 
940  if (uap->delta) {
941  error = copyin(uap->delta, &delta, sizeof(delta));
942  if (error)
943  return (error);
944  deltap = &delta;
945  } else
946  deltap = NULL;
947  error = kern_adjtime(td, deltap, &olddelta);
948  if (uap->olddelta && error == 0)
949  error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
950  return (error);
951 }
952 
953 int
954 kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
955 {
956  struct timeval atv;
957  int error;
958 
959  mtx_lock(&Giant);
960  if (olddelta) {
961  atv.tv_sec = time_adjtime / 1000000;
962  atv.tv_usec = time_adjtime % 1000000;
963  if (atv.tv_usec < 0) {
964  atv.tv_usec += 1000000;
965  atv.tv_sec--;
966  }
967  *olddelta = atv;
968  }
969  if (delta) {
970  if ((error = priv_check(td, PRIV_ADJTIME))) {
971  mtx_unlock(&Giant);
972  return (error);
973  }
974  time_adjtime = (int64_t)delta->tv_sec * 1000000 +
975  delta->tv_usec;
976  }
977  mtx_unlock(&Giant);
978  return (0);
979 }
980 
981 static struct callout resettodr_callout;
982 static int resettodr_period = 1800;
983 
984 static void
985 periodic_resettodr(void *arg __unused)
986 {
987 
988  if (!ntp_is_time_error()) {
989  mtx_lock(&Giant);
990  resettodr();
991  mtx_unlock(&Giant);
992  }
993  if (resettodr_period > 0)
994  callout_schedule(&resettodr_callout, resettodr_period * hz);
995 }
996 
997 static void
998 shutdown_resettodr(void *arg __unused, int howto __unused)
999 {
1000 
1001  callout_drain(&resettodr_callout);
1002  if (resettodr_period > 0 && !ntp_is_time_error()) {
1003  mtx_lock(&Giant);
1004  resettodr();
1005  mtx_unlock(&Giant);
1006  }
1007 }
1008 
1009 static int
1010 sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
1011 {
1012  int error;
1013 
1014  error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
1015  if (error || !req->newptr)
1016  return (error);
1017  if (resettodr_period == 0)
1018  callout_stop(&resettodr_callout);
1019  else
1020  callout_reset(&resettodr_callout, resettodr_period * hz,
1021  periodic_resettodr, NULL);
1022  return (0);
1023 }
1024 
1025 SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT|CTLFLAG_RW,
1026  &resettodr_period, 1800, sysctl_resettodr_period, "I",
1027  "Save system time to RTC with this period (in seconds)");
1028 TUNABLE_INT("machdep.rtc_save_period", &resettodr_period);
1029 
1030 static void
1031 start_periodic_resettodr(void *arg __unused)
1032 {
1033 
1034  EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
1035  SHUTDOWN_PRI_FIRST);
1037  if (resettodr_period == 0)
1038  return;
1039  callout_reset(&resettodr_callout, resettodr_period * hz,
1040  periodic_resettodr, NULL);
1041 }
1042 
1043 SYSINIT(periodic_resettodr, SI_SUB_LAST, SI_ORDER_MIDDLE,
1044  start_periodic_resettodr, NULL);
#define L_ADD(v, u)
Definition: kern_ntptime.c:62
int64_t l_fp
Definition: kern_ntptime.c:61
volatile time_t time_second
Definition: kern_tc.c:94
static long time_constant
Definition: kern_ntptime.c:154
static l_fp time_offset
Definition: kern_ntptime.c:159
int sys_ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
Definition: kern_ntptime.c:327
__FBSDID("$BSDSUniX$")
int kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
Definition: kern_ntptime.c:954
#define L_GINT(v)
Definition: kern_ntptime.c:77
static void ntp_init(void)
Definition: kern_ntptime.c:619
TUNABLE_INT("machdep.rtc_save_period",&resettodr_period)
static int time_state
Definition: kern_ntptime.c:150
static int ntp_sysctl(SYSCTL_HANDLER_ARGS)
Definition: kern_ntptime.c:290
SYSCTL_INT(_debug, OID_AUTO, boothowto, CTLFLAG_RD,&boothowto, 0,"Boot control flags, passed from loader")
int callout_schedule(struct callout *c, int to_ticks)
Definition: kern_timeout.c:867
static long time_esterror
Definition: kern_ntptime.c:157
SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL)
SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD, 0, sizeof(struct ntptimeval), ntp_sysctl,"S,ntptimeval","")
static void hardupdate(long offset)
Definition: kern_ntptime.c:663
static long time_precision
Definition: kern_ntptime.c:155
int priv_check(struct thread *td, int priv)
Definition: kern_priv.c:170
struct timex * tp
Definition: kern_ntptime.c:322
static int resettodr_period
Definition: kern_ntptime.c:982
static l_fp time_adj
Definition: kern_ntptime.c:161
void ntp_update_second(int64_t *adjustment, time_t *newsec)
Definition: kern_ntptime.c:480
static void periodic_resettodr(void *arg __unused)
Definition: kern_ntptime.c:985
static struct callout resettodr_callout
Definition: kern_ntptime.c:981
#define L_MPY(v, a)
Definition: kern_ntptime.c:73
#define SHIFT_FLL
Definition: kern_ntptime.c:148
struct mtx Giant
Definition: kern_mutex.c:140
int sysctl_handle_opaque(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:1163
#define L_SUB(v, u)
Definition: kern_ntptime.c:63
static long time_monitor
Definition: kern_ntptime.c:153
#define SHIFT_PLL
Definition: kern_ntptime.c:147
int sysctl_handle_int(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:986
struct timeval * olddelta
Definition: kern_ntptime.c:930
void nanotime(struct timespec *tsp)
Definition: kern_tc.c:211
static long time_maxerror
Definition: kern_ntptime.c:156
SYSCTL_LONG(_hw, OID_AUTO, availpages, CTLFLAG_RD,&physmem, 0,"")
SYSCTL_OPAQUE(_vfs_cache, OID_AUTO, nchstats, CTLFLAG_RD|CTLFLAG_MPSAFE,&nchstats, sizeof(nchstats),"LU","VFS cache effectiveness statistics")
void resettodr(void)
Definition: subr_rtc.c:150
static int ntp_is_time_error(void)
Definition: kern_ntptime.c:209
static void shutdown_resettodr(void *arg __unused, int howto __unused)
Definition: kern_ntptime.c:998
#define L_LINT(v, a)
Definition: kern_ntptime.c:76
static long time_tai
Definition: kern_ntptime.c:152
struct ntptimeval * ntvp
Definition: kern_ntptime.c:272
static long time_reftime
Definition: kern_ntptime.c:158
SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0,"")
void callout_init(struct callout *c, int mpsafe)
static void ntp_gettime1(struct ntptimeval *ntvp)
Definition: kern_ntptime.c:246
struct timeval * delta
Definition: kern_ntptime.c:929
#define L_RSHIFT(v, n)
Definition: kern_ntptime.c:66
static int sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
#define L_CLR(v)
Definition: kern_ntptime.c:74
FEATURE(kdtrace_hooks,"Kernel DTrace hooks which are required to load DTrace kernel modules")
static void start_periodic_resettodr(void *arg __unused)
static int time_status
Definition: kern_ntptime.c:151
static l_fp time_freq
Definition: kern_ntptime.c:160
int sys_ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
Definition: kern_ntptime.c:277
METHOD int gettime
Definition: clock_if.m:37
static int64_t time_adjtime
Definition: kern_ntptime.c:163
int sys_adjtime(struct thread *td, struct adjtime_args *uap)
Definition: kern_ntptime.c:935
int hz
Definition: subr_param.c:84