FreeBSD kernel libkern code
qdivrem.c
Go to the documentation of this file.
1 /*-
2  * Copyright (c) 1992, 1993
3  * The Regents of the University of California. All rights reserved.
4  *
5  * This software was developed by the Computer Systems Engineering group
6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7  * contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  * notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  * notice, this list of conditions and the following disclaimer in the
16  * documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  * may be used to endorse or promote products derived from this software
19  * without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$BSDSUniX$");
36 
37 /*
38  * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed),
39  * section 4.3.1, pp. 257--259.
40  */
41 
42 #include <libkern/quad.h>
43 
44 #define B (1 << HALF_BITS) /* digit base */
45 
46 /* Combine two `digits' to make a single two-digit number. */
47 #define COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b))
48 
49 /* select a type for digits in base B: use unsigned short if they fit */
50 #if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff
51 typedef unsigned short digit;
52 #else
53 typedef u_long digit;
54 #endif
55 
56 /*
57  * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
58  * `fall out' the left (there never will be any such anyway).
59  * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS.
60  */
61 static void
62 __shl(register digit *p, register int len, register int sh)
63 {
64  register int i;
65 
66  for (i = 0; i < len; i++)
67  p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));
68  p[i] = LHALF(p[i] << sh);
69 }
70 
71 /*
72  * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
73  *
74  * We do this in base 2-sup-HALF_BITS, so that all intermediate products
75  * fit within u_long. As a consequence, the maximum length dividend and
76  * divisor are 4 `digits' in this base (they are shorter if they have
77  * leading zeros).
78  */
79 u_quad_t
80 __qdivrem(uq, vq, arq)
81  u_quad_t uq, vq, *arq;
82 {
83  union uu tmp;
84  digit *u, *v, *q;
85  register digit v1, v2;
86  u_long qhat, rhat, t;
87  int m, n, d, j, i;
88  digit uspace[5], vspace[5], qspace[5];
89 
90  /*
91  * Take care of special cases: divide by zero, and u < v.
92  */
93  if (vq == 0) {
94  /* divide by zero. */
95  static volatile const unsigned int zero = 0;
96 
97  tmp.ul[H] = tmp.ul[L] = 1 / zero;
98  if (arq)
99  *arq = uq;
100  return (tmp.q);
101  }
102  if (uq < vq) {
103  if (arq)
104  *arq = uq;
105  return (0);
106  }
107  u = &uspace[0];
108  v = &vspace[0];
109  q = &qspace[0];
110 
111  /*
112  * Break dividend and divisor into digits in base B, then
113  * count leading zeros to determine m and n. When done, we
114  * will have:
115  * u = (u[1]u[2]...u[m+n]) sub B
116  * v = (v[1]v[2]...v[n]) sub B
117  * v[1] != 0
118  * 1 < n <= 4 (if n = 1, we use a different division algorithm)
119  * m >= 0 (otherwise u < v, which we already checked)
120  * m + n = 4
121  * and thus
122  * m = 4 - n <= 2
123  */
124  tmp.uq = uq;
125  u[0] = 0;
126  u[1] = HHALF(tmp.ul[H]);
127  u[2] = LHALF(tmp.ul[H]);
128  u[3] = HHALF(tmp.ul[L]);
129  u[4] = LHALF(tmp.ul[L]);
130  tmp.uq = vq;
131  v[1] = HHALF(tmp.ul[H]);
132  v[2] = LHALF(tmp.ul[H]);
133  v[3] = HHALF(tmp.ul[L]);
134  v[4] = LHALF(tmp.ul[L]);
135  for (n = 4; v[1] == 0; v++) {
136  if (--n == 1) {
137  u_long rbj; /* r*B+u[j] (not root boy jim) */
138  digit q1, q2, q3, q4;
139 
140  /*
141  * Change of plan, per exercise 16.
142  * r = 0;
143  * for j = 1..4:
144  * q[j] = floor((r*B + u[j]) / v),
145  * r = (r*B + u[j]) % v;
146  * We unroll this completely here.
147  */
148  t = v[2]; /* nonzero, by definition */
149  q1 = u[1] / t;
150  rbj = COMBINE(u[1] % t, u[2]);
151  q2 = rbj / t;
152  rbj = COMBINE(rbj % t, u[3]);
153  q3 = rbj / t;
154  rbj = COMBINE(rbj % t, u[4]);
155  q4 = rbj / t;
156  if (arq)
157  *arq = rbj % t;
158  tmp.ul[H] = COMBINE(q1, q2);
159  tmp.ul[L] = COMBINE(q3, q4);
160  return (tmp.q);
161  }
162  }
163 
164  /*
165  * By adjusting q once we determine m, we can guarantee that
166  * there is a complete four-digit quotient at &qspace[1] when
167  * we finally stop.
168  */
169  for (m = 4 - n; u[1] == 0; u++)
170  m--;
171  for (i = 4 - m; --i >= 0;)
172  q[i] = 0;
173  q += 4 - m;
174 
175  /*
176  * Here we run Program D, translated from MIX to C and acquiring
177  * a few minor changes.
178  *
179  * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
180  */
181  d = 0;
182  for (t = v[1]; t < B / 2; t <<= 1)
183  d++;
184  if (d > 0) {
185  __shl(&u[0], m + n, d); /* u <<= d */
186  __shl(&v[1], n - 1, d); /* v <<= d */
187  }
188  /*
189  * D2: j = 0.
190  */
191  j = 0;
192  v1 = v[1]; /* for D3 -- note that v[1..n] are constant */
193  v2 = v[2]; /* for D3 */
194  do {
195  register digit uj0, uj1, uj2;
196 
197  /*
198  * D3: Calculate qhat (\^q, in TeX notation).
199  * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
200  * let rhat = (u[j]*B + u[j+1]) mod v[1].
201  * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
202  * decrement qhat and increase rhat correspondingly.
203  * Note that if rhat >= B, v[2]*qhat < rhat*B.
204  */
205  uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */
206  uj1 = u[j + 1]; /* for D3 only */
207  uj2 = u[j + 2]; /* for D3 only */
208  if (uj0 == v1) {
209  qhat = B;
210  rhat = uj1;
211  goto qhat_too_big;
212  } else {
213  u_long nn = COMBINE(uj0, uj1);
214  qhat = nn / v1;
215  rhat = nn % v1;
216  }
217  while (v2 * qhat > COMBINE(rhat, uj2)) {
218  qhat_too_big:
219  qhat--;
220  if ((rhat += v1) >= B)
221  break;
222  }
223  /*
224  * D4: Multiply and subtract.
225  * The variable `t' holds any borrows across the loop.
226  * We split this up so that we do not require v[0] = 0,
227  * and to eliminate a final special case.
228  */
229  for (t = 0, i = n; i > 0; i--) {
230  t = u[i + j] - v[i] * qhat - t;
231  u[i + j] = LHALF(t);
232  t = (B - HHALF(t)) & (B - 1);
233  }
234  t = u[j] - t;
235  u[j] = LHALF(t);
236  /*
237  * D5: test remainder.
238  * There is a borrow if and only if HHALF(t) is nonzero;
239  * in that (rare) case, qhat was too large (by exactly 1).
240  * Fix it by adding v[1..n] to u[j..j+n].
241  */
242  if (HHALF(t)) {
243  qhat--;
244  for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
245  t += u[i + j] + v[i];
246  u[i + j] = LHALF(t);
247  t = HHALF(t);
248  }
249  u[j] = LHALF(u[j] + t);
250  }
251  q[j] = qhat;
252  } while (++j <= m); /* D7: loop on j. */
253 
254  /*
255  * If caller wants the remainder, we have to calculate it as
256  * u[m..m+n] >> d (this is at most n digits and thus fits in
257  * u[m+1..m+n], but we may need more source digits).
258  */
259  if (arq) {
260  if (d) {
261  for (i = m + n; i > m; --i)
262  u[i] = (u[i] >> d) |
263  LHALF(u[i - 1] << (HALF_BITS - d));
264  u[i] = 0;
265  }
266  tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
267  tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
268  *arq = tmp.q;
269  }
270 
271  tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
272  tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
273  return (tmp.q);
274 }
Definition: quad.h:65
#define H
Definition: quad.h:75
u_long ul[2]
Definition: quad.h:69
#define LHALF(x)
Definition: quad.h:97
__FBSDID("$BSDSUniX$")
#define L
Definition: quad.h:76
#define HHALF(x)
Definition: quad.h:96
#define COMBINE(a, b)
Definition: qdivrem.c:47
quad_t q
Definition: quad.h:66
#define B
Definition: qdivrem.c:44
quad_t uq
Definition: quad.h:67
static void __shl(register digit *p, register int len, register int sh)
Definition: qdivrem.c:62
#define HALF_BITS
Definition: quad.h:85
u_quad_t __qdivrem(u_quad_t uq, u_quad_t vq, u_quad_t *arq)
Definition: qdivrem.c:80
u_long digit
Definition: qdivrem.c:53
#define v1