FreeBSD kernel kern code
uipc_mbuf.c
Go to the documentation of this file.
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1991, 1993
3  * The Regents of the University of California. All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  * notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  * notice, this list of conditions and the following disclaimer in the
12  * documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  * may be used to endorse or promote products derived from this software
15  * without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$BSDSUniX$");
34 
35 #include "opt_param.h"
36 #include "opt_mbuf_stress_test.h"
37 #include "opt_mbuf_profiling.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/limits.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/sysctl.h>
47 #include <sys/domain.h>
48 #include <sys/protosw.h>
49 #include <sys/uio.h>
50 
53 int max_hdr;
55 #ifdef MBUF_STRESS_TEST
56 int m_defragpackets;
57 int m_defragbytes;
58 int m_defraguseless;
59 int m_defragfailure;
60 int m_defragrandomfailures;
61 #endif
62 
63 /*
64  * sysctl(8) exported objects
65  */
66 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
67  &max_linkhdr, 0, "Size of largest link layer header");
68 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
69  &max_protohdr, 0, "Size of largest protocol layer header");
70 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
71  &max_hdr, 0, "Size of largest link plus protocol header");
72 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
73  &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
74 #ifdef MBUF_STRESS_TEST
75 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
76  &m_defragpackets, 0, "");
77 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
78  &m_defragbytes, 0, "");
79 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
80  &m_defraguseless, 0, "");
81 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
82  &m_defragfailure, 0, "");
83 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
84  &m_defragrandomfailures, 0, "");
85 #endif
86 
87 /*
88  * Allocate a given length worth of mbufs and/or clusters (whatever fits
89  * best) and return a pointer to the top of the allocated chain. If an
90  * existing mbuf chain is provided, then we will append the new chain
91  * to the existing one but still return the top of the newly allocated
92  * chain.
93  */
94 struct mbuf *
95 m_getm2(struct mbuf *m, int len, int how, short type, int flags)
96 {
97  struct mbuf *mb, *nm = NULL, *mtail = NULL;
98 
99  KASSERT(len >= 0, ("%s: len is < 0", __func__));
100 
101  /* Validate flags. */
102  flags &= (M_PKTHDR | M_EOR);
103 
104  /* Packet header mbuf must be first in chain. */
105  if ((flags & M_PKTHDR) && m != NULL)
106  flags &= ~M_PKTHDR;
107 
108  /* Loop and append maximum sized mbufs to the chain tail. */
109  while (len > 0) {
110  if (len > MCLBYTES)
111  mb = m_getjcl(how, type, (flags & M_PKTHDR),
112  MJUMPAGESIZE);
113  else if (len >= MINCLSIZE)
114  mb = m_getcl(how, type, (flags & M_PKTHDR));
115  else if (flags & M_PKTHDR)
116  mb = m_gethdr(how, type);
117  else
118  mb = m_get(how, type);
119 
120  /* Fail the whole operation if one mbuf can't be allocated. */
121  if (mb == NULL) {
122  if (nm != NULL)
123  m_freem(nm);
124  return (NULL);
125  }
126 
127  /* Book keeping. */
128  len -= (mb->m_flags & M_EXT) ? mb->m_ext.ext_size :
129  ((mb->m_flags & M_PKTHDR) ? MHLEN : MLEN);
130  if (mtail != NULL)
131  mtail->m_next = mb;
132  else
133  nm = mb;
134  mtail = mb;
135  flags &= ~M_PKTHDR; /* Only valid on the first mbuf. */
136  }
137  if (flags & M_EOR)
138  mtail->m_flags |= M_EOR; /* Only valid on the last mbuf. */
139 
140  /* If mbuf was supplied, append new chain to the end of it. */
141  if (m != NULL) {
142  for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
143  ;
144  mtail->m_next = nm;
145  mtail->m_flags &= ~M_EOR;
146  } else
147  m = nm;
148 
149  return (m);
150 }
151 
152 /*
153  * Free an entire chain of mbufs and associated external buffers, if
154  * applicable.
155  */
156 void
157 m_freem(struct mbuf *mb)
158 {
159 
160  while (mb != NULL)
161  mb = m_free(mb);
162 }
163 
164 /*-
165  * Configure a provided mbuf to refer to the provided external storage
166  * buffer and setup a reference count for said buffer. If the setting
167  * up of the reference count fails, the M_EXT bit will not be set. If
168  * successfull, the M_EXT bit is set in the mbuf's flags.
169  *
170  * Arguments:
171  * mb The existing mbuf to which to attach the provided buffer.
172  * buf The address of the provided external storage buffer.
173  * size The size of the provided buffer.
174  * freef A pointer to a routine that is responsible for freeing the
175  * provided external storage buffer.
176  * args A pointer to an argument structure (of any type) to be passed
177  * to the provided freef routine (may be NULL).
178  * flags Any other flags to be passed to the provided mbuf.
179  * type The type that the external storage buffer should be
180  * labeled with.
181  *
182  * Returns:
183  * Nothing.
184  */
185 void
186 m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
187  void (*freef)(void *, void *), void *arg1, void *arg2, int flags, int type)
188 {
189  KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
190 
191  if (type != EXT_EXTREF)
192  mb->m_ext.ref_cnt = (u_int *)uma_zalloc(zone_ext_refcnt, M_NOWAIT);
193  if (mb->m_ext.ref_cnt != NULL) {
194  *(mb->m_ext.ref_cnt) = 1;
195  mb->m_flags |= (M_EXT | flags);
196  mb->m_ext.ext_buf = buf;
197  mb->m_data = mb->m_ext.ext_buf;
198  mb->m_ext.ext_size = size;
199  mb->m_ext.ext_free = freef;
200  mb->m_ext.ext_arg1 = arg1;
201  mb->m_ext.ext_arg2 = arg2;
202  mb->m_ext.ext_type = type;
203  }
204 }
205 
206 /*
207  * Non-directly-exported function to clean up after mbufs with M_EXT
208  * storage attached to them if the reference count hits 1.
209  */
210 void
211 mb_free_ext(struct mbuf *m)
212 {
213  int skipmbuf;
214 
215  KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
216  KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
217 
218 
219  /*
220  * check if the header is embedded in the cluster
221  */
222  skipmbuf = (m->m_flags & M_NOFREE);
223 
224  /* Free attached storage if this mbuf is the only reference to it. */
225  if (*(m->m_ext.ref_cnt) == 1 ||
226  atomic_fetchadd_int(m->m_ext.ref_cnt, -1) == 1) {
227  switch (m->m_ext.ext_type) {
228  case EXT_PACKET: /* The packet zone is special. */
229  if (*(m->m_ext.ref_cnt) == 0)
230  *(m->m_ext.ref_cnt) = 1;
231  uma_zfree(zone_pack, m);
232  return; /* Job done. */
233  case EXT_CLUSTER:
234  uma_zfree(zone_clust, m->m_ext.ext_buf);
235  break;
236  case EXT_JUMBOP:
237  uma_zfree(zone_jumbop, m->m_ext.ext_buf);
238  break;
239  case EXT_JUMBO9:
240  uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
241  break;
242  case EXT_JUMBO16:
243  uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
244  break;
245  case EXT_SFBUF:
246  case EXT_NET_DRV:
247  case EXT_MOD_TYPE:
248  case EXT_DISPOSABLE:
249  *(m->m_ext.ref_cnt) = 0;
250  uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *,
251  m->m_ext.ref_cnt));
252  /* FALLTHROUGH */
253  case EXT_EXTREF:
254  KASSERT(m->m_ext.ext_free != NULL,
255  ("%s: ext_free not set", __func__));
256  (*(m->m_ext.ext_free))(m->m_ext.ext_arg1,
257  m->m_ext.ext_arg2);
258  break;
259  default:
260  KASSERT(m->m_ext.ext_type == 0,
261  ("%s: unknown ext_type", __func__));
262  }
263  }
264  if (skipmbuf)
265  return;
266 
267  /*
268  * Free this mbuf back to the mbuf zone with all m_ext
269  * information purged.
270  */
271  m->m_ext.ext_buf = NULL;
272  m->m_ext.ext_free = NULL;
273  m->m_ext.ext_arg1 = NULL;
274  m->m_ext.ext_arg2 = NULL;
275  m->m_ext.ref_cnt = NULL;
276  m->m_ext.ext_size = 0;
277  m->m_ext.ext_type = 0;
278  m->m_flags &= ~M_EXT;
279  uma_zfree(zone_mbuf, m);
280 }
281 
282 /*
283  * Attach the cluster from *m to *n, set up m_ext in *n
284  * and bump the refcount of the cluster.
285  */
286 static void
287 mb_dupcl(struct mbuf *n, struct mbuf *m)
288 {
289  KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
290  KASSERT(m->m_ext.ref_cnt != NULL, ("%s: ref_cnt not set", __func__));
291  KASSERT((n->m_flags & M_EXT) == 0, ("%s: M_EXT set", __func__));
292 
293  if (*(m->m_ext.ref_cnt) == 1)
294  *(m->m_ext.ref_cnt) += 1;
295  else
296  atomic_add_int(m->m_ext.ref_cnt, 1);
297  n->m_ext.ext_buf = m->m_ext.ext_buf;
298  n->m_ext.ext_free = m->m_ext.ext_free;
299  n->m_ext.ext_arg1 = m->m_ext.ext_arg1;
300  n->m_ext.ext_arg2 = m->m_ext.ext_arg2;
301  n->m_ext.ext_size = m->m_ext.ext_size;
302  n->m_ext.ref_cnt = m->m_ext.ref_cnt;
303  n->m_ext.ext_type = m->m_ext.ext_type;
304  n->m_flags |= M_EXT;
305  n->m_flags |= m->m_flags & M_RDONLY;
306 }
307 
308 /*
309  * Clean up mbuf (chain) from any tags and packet headers.
310  * If "all" is set then the first mbuf in the chain will be
311  * cleaned too.
312  */
313 void
314 m_demote(struct mbuf *m0, int all)
315 {
316  struct mbuf *m;
317 
318  for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
319  if (m->m_flags & M_PKTHDR) {
320  m_tag_delete_chain(m, NULL);
321  m->m_flags &= ~M_PKTHDR;
322  bzero(&m->m_pkthdr, sizeof(struct pkthdr));
323  }
324  if (m != m0 && m->m_nextpkt != NULL) {
325  KASSERT(m->m_nextpkt == NULL,
326  ("%s: m_nextpkt not NULL", __func__));
327  m_freem(m->m_nextpkt);
328  m->m_nextpkt = NULL;
329  }
330  m->m_flags = m->m_flags & (M_EXT|M_RDONLY|M_FREELIST|M_NOFREE);
331  }
332 }
333 
334 /*
335  * Sanity checks on mbuf (chain) for use in KASSERT() and general
336  * debugging.
337  * Returns 0 or panics when bad and 1 on all tests passed.
338  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
339  * blow up later.
340  */
341 int
342 m_sanity(struct mbuf *m0, int sanitize)
343 {
344  struct mbuf *m;
345  caddr_t a, b;
346  int pktlen = 0;
347 
348 #ifdef INVARIANTS
349 #define M_SANITY_ACTION(s) panic("mbuf %p: " s, m)
350 #else
351 #define M_SANITY_ACTION(s) printf("mbuf %p: " s, m)
352 #endif
353 
354  for (m = m0; m != NULL; m = m->m_next) {
355  /*
356  * Basic pointer checks. If any of these fails then some
357  * unrelated kernel memory before or after us is trashed.
358  * No way to recover from that.
359  */
360  a = ((m->m_flags & M_EXT) ? m->m_ext.ext_buf :
361  ((m->m_flags & M_PKTHDR) ? (caddr_t)(&m->m_pktdat) :
362  (caddr_t)(&m->m_dat)) );
363  b = (caddr_t)(a + (m->m_flags & M_EXT ? m->m_ext.ext_size :
364  ((m->m_flags & M_PKTHDR) ? MHLEN : MLEN)));
365  if ((caddr_t)m->m_data < a)
366  M_SANITY_ACTION("m_data outside mbuf data range left");
367  if ((caddr_t)m->m_data > b)
368  M_SANITY_ACTION("m_data outside mbuf data range right");
369  if ((caddr_t)m->m_data + m->m_len > b)
370  M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
371  if ((m->m_flags & M_PKTHDR) && m->m_pkthdr.header) {
372  if ((caddr_t)m->m_pkthdr.header < a ||
373  (caddr_t)m->m_pkthdr.header > b)
374  M_SANITY_ACTION("m_pkthdr.header outside mbuf data range");
375  }
376 
377  /* m->m_nextpkt may only be set on first mbuf in chain. */
378  if (m != m0 && m->m_nextpkt != NULL) {
379  if (sanitize) {
380  m_freem(m->m_nextpkt);
381  m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
382  } else
383  M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
384  }
385 
386  /* packet length (not mbuf length!) calculation */
387  if (m0->m_flags & M_PKTHDR)
388  pktlen += m->m_len;
389 
390  /* m_tags may only be attached to first mbuf in chain. */
391  if (m != m0 && m->m_flags & M_PKTHDR &&
392  !SLIST_EMPTY(&m->m_pkthdr.tags)) {
393  if (sanitize) {
394  m_tag_delete_chain(m, NULL);
395  /* put in 0xDEADC0DE perhaps? */
396  } else
397  M_SANITY_ACTION("m_tags on in-chain mbuf");
398  }
399 
400  /* M_PKTHDR may only be set on first mbuf in chain */
401  if (m != m0 && m->m_flags & M_PKTHDR) {
402  if (sanitize) {
403  bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
404  m->m_flags &= ~M_PKTHDR;
405  /* put in 0xDEADCODE and leave hdr flag in */
406  } else
407  M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
408  }
409  }
410  m = m0;
411  if (pktlen && pktlen != m->m_pkthdr.len) {
412  if (sanitize)
413  m->m_pkthdr.len = 0;
414  else
415  M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
416  }
417  return 1;
418 
419 #undef M_SANITY_ACTION
420 }
421 
422 
423 /*
424  * "Move" mbuf pkthdr from "from" to "to".
425  * "from" must have M_PKTHDR set, and "to" must be empty.
426  */
427 void
428 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
429 {
430 
431 #if 0
432  /* see below for why these are not enabled */
433  M_ASSERTPKTHDR(to);
434  /* Note: with MAC, this may not be a good assertion. */
435  KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
436  ("m_move_pkthdr: to has tags"));
437 #endif
438 #ifdef MAC
439  /*
440  * XXXMAC: It could be this should also occur for non-MAC?
441  */
442  if (to->m_flags & M_PKTHDR)
443  m_tag_delete_chain(to, NULL);
444 #endif
445  to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
446  if ((to->m_flags & M_EXT) == 0)
447  to->m_data = to->m_pktdat;
448  to->m_pkthdr = from->m_pkthdr; /* especially tags */
449  SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */
450  from->m_flags &= ~M_PKTHDR;
451 }
452 
453 /*
454  * Duplicate "from"'s mbuf pkthdr in "to".
455  * "from" must have M_PKTHDR set, and "to" must be empty.
456  * In particular, this does a deep copy of the packet tags.
457  */
458 int
459 m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
460 {
461 
462 #if 0
463  /*
464  * The mbuf allocator only initializes the pkthdr
465  * when the mbuf is allocated with MGETHDR. Many users
466  * (e.g. m_copy*, m_prepend) use MGET and then
467  * smash the pkthdr as needed causing these
468  * assertions to trip. For now just disable them.
469  */
470  M_ASSERTPKTHDR(to);
471  /* Note: with MAC, this may not be a good assertion. */
472  KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
473 #endif
474  MBUF_CHECKSLEEP(how);
475 #ifdef MAC
476  if (to->m_flags & M_PKTHDR)
477  m_tag_delete_chain(to, NULL);
478 #endif
479  to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
480  if ((to->m_flags & M_EXT) == 0)
481  to->m_data = to->m_pktdat;
482  to->m_pkthdr = from->m_pkthdr;
483  SLIST_INIT(&to->m_pkthdr.tags);
484  return (m_tag_copy_chain(to, from, MBTOM(how)));
485 }
486 
487 /*
488  * Lesser-used path for M_PREPEND:
489  * allocate new mbuf to prepend to chain,
490  * copy junk along.
491  */
492 struct mbuf *
493 m_prepend(struct mbuf *m, int len, int how)
494 {
495  struct mbuf *mn;
496 
497  if (m->m_flags & M_PKTHDR)
498  MGETHDR(mn, how, m->m_type);
499  else
500  MGET(mn, how, m->m_type);
501  if (mn == NULL) {
502  m_freem(m);
503  return (NULL);
504  }
505  if (m->m_flags & M_PKTHDR)
506  M_MOVE_PKTHDR(mn, m);
507  mn->m_next = m;
508  m = mn;
509  if(m->m_flags & M_PKTHDR) {
510  if (len < MHLEN)
511  MH_ALIGN(m, len);
512  } else {
513  if (len < MLEN)
514  M_ALIGN(m, len);
515  }
516  m->m_len = len;
517  return (m);
518 }
519 
520 /*
521  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
522  * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf.
523  * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller.
524  * Note that the copy is read-only, because clusters are not copied,
525  * only their reference counts are incremented.
526  */
527 struct mbuf *
528 m_copym(struct mbuf *m, int off0, int len, int wait)
529 {
530  struct mbuf *n, **np;
531  int off = off0;
532  struct mbuf *top;
533  int copyhdr = 0;
534 
535  KASSERT(off >= 0, ("m_copym, negative off %d", off));
536  KASSERT(len >= 0, ("m_copym, negative len %d", len));
537  MBUF_CHECKSLEEP(wait);
538  if (off == 0 && m->m_flags & M_PKTHDR)
539  copyhdr = 1;
540  while (off > 0) {
541  KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
542  if (off < m->m_len)
543  break;
544  off -= m->m_len;
545  m = m->m_next;
546  }
547  np = &top;
548  top = 0;
549  while (len > 0) {
550  if (m == NULL) {
551  KASSERT(len == M_COPYALL,
552  ("m_copym, length > size of mbuf chain"));
553  break;
554  }
555  if (copyhdr)
556  MGETHDR(n, wait, m->m_type);
557  else
558  MGET(n, wait, m->m_type);
559  *np = n;
560  if (n == NULL)
561  goto nospace;
562  if (copyhdr) {
563  if (!m_dup_pkthdr(n, m, wait))
564  goto nospace;
565  if (len == M_COPYALL)
566  n->m_pkthdr.len -= off0;
567  else
568  n->m_pkthdr.len = len;
569  copyhdr = 0;
570  }
571  n->m_len = min(len, m->m_len - off);
572  if (m->m_flags & M_EXT) {
573  n->m_data = m->m_data + off;
574  mb_dupcl(n, m);
575  } else
576  bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
577  (u_int)n->m_len);
578  if (len != M_COPYALL)
579  len -= n->m_len;
580  off = 0;
581  m = m->m_next;
582  np = &n->m_next;
583  }
584  if (top == NULL)
585  mbstat.m_mcfail++; /* XXX: No consistency. */
586 
587  return (top);
588 nospace:
589  m_freem(top);
590  mbstat.m_mcfail++; /* XXX: No consistency. */
591  return (NULL);
592 }
593 
594 /*
595  * Returns mbuf chain with new head for the prepending case.
596  * Copies from mbuf (chain) n from off for len to mbuf (chain) m
597  * either prepending or appending the data.
598  * The resulting mbuf (chain) m is fully writeable.
599  * m is destination (is made writeable)
600  * n is source, off is offset in source, len is len from offset
601  * dir, 0 append, 1 prepend
602  * how, wait or nowait
603  */
604 
605 static int
606 m_bcopyxxx(void *s, void *t, u_int len)
607 {
608  bcopy(s, t, (size_t)len);
609  return 0;
610 }
611 
612 struct mbuf *
613 m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len,
614  int prep, int how)
615 {
616  struct mbuf *mm, *x, *z, *prev = NULL;
617  caddr_t p;
618  int i, nlen = 0;
619  caddr_t buf[MLEN];
620 
621  KASSERT(m != NULL && n != NULL, ("m_copymdata, no target or source"));
622  KASSERT(off >= 0, ("m_copymdata, negative off %d", off));
623  KASSERT(len >= 0, ("m_copymdata, negative len %d", len));
624  KASSERT(prep == 0 || prep == 1, ("m_copymdata, unknown direction %d", prep));
625 
626  mm = m;
627  if (!prep) {
628  while(mm->m_next) {
629  prev = mm;
630  mm = mm->m_next;
631  }
632  }
633  for (z = n; z != NULL; z = z->m_next)
634  nlen += z->m_len;
635  if (len == M_COPYALL)
636  len = nlen - off;
637  if (off + len > nlen || len < 1)
638  return NULL;
639 
640  if (!M_WRITABLE(mm)) {
641  /* XXX: Use proper m_xxx function instead. */
642  x = m_getcl(how, MT_DATA, mm->m_flags);
643  if (x == NULL)
644  return NULL;
645  bcopy(mm->m_ext.ext_buf, x->m_ext.ext_buf, x->m_ext.ext_size);
646  p = x->m_ext.ext_buf + (mm->m_data - mm->m_ext.ext_buf);
647  x->m_data = p;
648  mm->m_next = NULL;
649  if (mm != m)
650  prev->m_next = x;
651  m_free(mm);
652  mm = x;
653  }
654 
655  /*
656  * Append/prepend the data. Allocating mbufs as necessary.
657  */
658  /* Shortcut if enough free space in first/last mbuf. */
659  if (!prep && M_TRAILINGSPACE(mm) >= len) {
660  m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t) +
661  mm->m_len);
662  mm->m_len += len;
663  mm->m_pkthdr.len += len;
664  return m;
665  }
666  if (prep && M_LEADINGSPACE(mm) >= len) {
667  mm->m_data = mtod(mm, caddr_t) - len;
668  m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t));
669  mm->m_len += len;
670  mm->m_pkthdr.len += len;
671  return mm;
672  }
673 
674  /* Expand first/last mbuf to cluster if possible. */
675  if (!prep && !(mm->m_flags & M_EXT) && len > M_TRAILINGSPACE(mm)) {
676  bcopy(mm->m_data, &buf, mm->m_len);
677  m_clget(mm, how);
678  if (!(mm->m_flags & M_EXT))
679  return NULL;
680  bcopy(&buf, mm->m_ext.ext_buf, mm->m_len);
681  mm->m_data = mm->m_ext.ext_buf;
682  mm->m_pkthdr.header = NULL;
683  }
684  if (prep && !(mm->m_flags & M_EXT) && len > M_LEADINGSPACE(mm)) {
685  bcopy(mm->m_data, &buf, mm->m_len);
686  m_clget(mm, how);
687  if (!(mm->m_flags & M_EXT))
688  return NULL;
689  bcopy(&buf, (caddr_t *)mm->m_ext.ext_buf +
690  mm->m_ext.ext_size - mm->m_len, mm->m_len);
691  mm->m_data = (caddr_t)mm->m_ext.ext_buf +
692  mm->m_ext.ext_size - mm->m_len;
693  mm->m_pkthdr.header = NULL;
694  }
695 
696  /* Append/prepend as many mbuf (clusters) as necessary to fit len. */
697  if (!prep && len > M_TRAILINGSPACE(mm)) {
698  if (!m_getm(mm, len - M_TRAILINGSPACE(mm), how, MT_DATA))
699  return NULL;
700  }
701  if (prep && len > M_LEADINGSPACE(mm)) {
702  if (!(z = m_getm(NULL, len - M_LEADINGSPACE(mm), how, MT_DATA)))
703  return NULL;
704  i = 0;
705  for (x = z; x != NULL; x = x->m_next) {
706  i += x->m_flags & M_EXT ? x->m_ext.ext_size :
707  (x->m_flags & M_PKTHDR ? MHLEN : MLEN);
708  if (!x->m_next)
709  break;
710  }
711  z->m_data += i - len;
712  m_move_pkthdr(mm, z);
713  x->m_next = mm;
714  mm = z;
715  }
716 
717  /* Seek to start position in source mbuf. Optimization for long chains. */
718  while (off > 0) {
719  if (off < n->m_len)
720  break;
721  off -= n->m_len;
722  n = n->m_next;
723  }
724 
725  /* Copy data into target mbuf. */
726  z = mm;
727  while (len > 0) {
728  KASSERT(z != NULL, ("m_copymdata, falling off target edge"));
729  i = M_TRAILINGSPACE(z);
730  m_apply(n, off, i, m_bcopyxxx, mtod(z, caddr_t) + z->m_len);
731  z->m_len += i;
732  /* fixup pkthdr.len if necessary */
733  if ((prep ? mm : m)->m_flags & M_PKTHDR)
734  (prep ? mm : m)->m_pkthdr.len += i;
735  off += i;
736  len -= i;
737  z = z->m_next;
738  }
739  return (prep ? mm : m);
740 }
741 
742 /*
743  * Copy an entire packet, including header (which must be present).
744  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
745  * Note that the copy is read-only, because clusters are not copied,
746  * only their reference counts are incremented.
747  * Preserve alignment of the first mbuf so if the creator has left
748  * some room at the beginning (e.g. for inserting protocol headers)
749  * the copies still have the room available.
750  */
751 struct mbuf *
752 m_copypacket(struct mbuf *m, int how)
753 {
754  struct mbuf *top, *n, *o;
755 
756  MBUF_CHECKSLEEP(how);
757  MGET(n, how, m->m_type);
758  top = n;
759  if (n == NULL)
760  goto nospace;
761 
762  if (!m_dup_pkthdr(n, m, how))
763  goto nospace;
764  n->m_len = m->m_len;
765  if (m->m_flags & M_EXT) {
766  n->m_data = m->m_data;
767  mb_dupcl(n, m);
768  } else {
769  n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
770  bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
771  }
772 
773  m = m->m_next;
774  while (m) {
775  MGET(o, how, m->m_type);
776  if (o == NULL)
777  goto nospace;
778 
779  n->m_next = o;
780  n = n->m_next;
781 
782  n->m_len = m->m_len;
783  if (m->m_flags & M_EXT) {
784  n->m_data = m->m_data;
785  mb_dupcl(n, m);
786  } else {
787  bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
788  }
789 
790  m = m->m_next;
791  }
792  return top;
793 nospace:
794  m_freem(top);
795  mbstat.m_mcfail++; /* XXX: No consistency. */
796  return (NULL);
797 }
798 
799 /*
800  * Copy data from an mbuf chain starting "off" bytes from the beginning,
801  * continuing for "len" bytes, into the indicated buffer.
802  */
803 void
804 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
805 {
806  u_int count;
807 
808  KASSERT(off >= 0, ("m_copydata, negative off %d", off));
809  KASSERT(len >= 0, ("m_copydata, negative len %d", len));
810  while (off > 0) {
811  KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
812  if (off < m->m_len)
813  break;
814  off -= m->m_len;
815  m = m->m_next;
816  }
817  while (len > 0) {
818  KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
819  count = min(m->m_len - off, len);
820  bcopy(mtod(m, caddr_t) + off, cp, count);
821  len -= count;
822  cp += count;
823  off = 0;
824  m = m->m_next;
825  }
826 }
827 
828 /*
829  * Copy a packet header mbuf chain into a completely new chain, including
830  * copying any mbuf clusters. Use this instead of m_copypacket() when
831  * you need a writable copy of an mbuf chain.
832  */
833 struct mbuf *
834 m_dup(struct mbuf *m, int how)
835 {
836  struct mbuf **p, *top = NULL;
837  int remain, moff, nsize;
838 
839  MBUF_CHECKSLEEP(how);
840  /* Sanity check */
841  if (m == NULL)
842  return (NULL);
843  M_ASSERTPKTHDR(m);
844 
845  /* While there's more data, get a new mbuf, tack it on, and fill it */
846  remain = m->m_pkthdr.len;
847  moff = 0;
848  p = &top;
849  while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */
850  struct mbuf *n;
851 
852  /* Get the next new mbuf */
853  if (remain >= MINCLSIZE) {
854  n = m_getcl(how, m->m_type, 0);
855  nsize = MCLBYTES;
856  } else {
857  n = m_get(how, m->m_type);
858  nsize = MLEN;
859  }
860  if (n == NULL)
861  goto nospace;
862 
863  if (top == NULL) { /* First one, must be PKTHDR */
864  if (!m_dup_pkthdr(n, m, how)) {
865  m_free(n);
866  goto nospace;
867  }
868  if ((n->m_flags & M_EXT) == 0)
869  nsize = MHLEN;
870  n->m_flags &= ~M_RDONLY;
871  }
872  n->m_len = 0;
873 
874  /* Link it into the new chain */
875  *p = n;
876  p = &n->m_next;
877 
878  /* Copy data from original mbuf(s) into new mbuf */
879  while (n->m_len < nsize && m != NULL) {
880  int chunk = min(nsize - n->m_len, m->m_len - moff);
881 
882  bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
883  moff += chunk;
884  n->m_len += chunk;
885  remain -= chunk;
886  if (moff == m->m_len) {
887  m = m->m_next;
888  moff = 0;
889  }
890  }
891 
892  /* Check correct total mbuf length */
893  KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
894  ("%s: bogus m_pkthdr.len", __func__));
895  }
896  return (top);
897 
898 nospace:
899  m_freem(top);
900  mbstat.m_mcfail++; /* XXX: No consistency. */
901  return (NULL);
902 }
903 
904 /*
905  * Concatenate mbuf chain n to m.
906  * Both chains must be of the same type (e.g. MT_DATA).
907  * Any m_pkthdr is not updated.
908  */
909 void
910 m_cat(struct mbuf *m, struct mbuf *n)
911 {
912  while (m->m_next)
913  m = m->m_next;
914  while (n) {
915  if (!M_WRITABLE(m) ||
916  M_TRAILINGSPACE(m) < n->m_len) {
917  /* just join the two chains */
918  m->m_next = n;
919  return;
920  }
921  /* splat the data from one into the other */
922  bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
923  (u_int)n->m_len);
924  m->m_len += n->m_len;
925  n = m_free(n);
926  }
927 }
928 
929 void
930 m_adj(struct mbuf *mp, int req_len)
931 {
932  int len = req_len;
933  struct mbuf *m;
934  int count;
935 
936  if ((m = mp) == NULL)
937  return;
938  if (len >= 0) {
939  /*
940  * Trim from head.
941  */
942  while (m != NULL && len > 0) {
943  if (m->m_len <= len) {
944  len -= m->m_len;
945  m->m_len = 0;
946  m = m->m_next;
947  } else {
948  m->m_len -= len;
949  m->m_data += len;
950  len = 0;
951  }
952  }
953  if (mp->m_flags & M_PKTHDR)
954  mp->m_pkthdr.len -= (req_len - len);
955  } else {
956  /*
957  * Trim from tail. Scan the mbuf chain,
958  * calculating its length and finding the last mbuf.
959  * If the adjustment only affects this mbuf, then just
960  * adjust and return. Otherwise, rescan and truncate
961  * after the remaining size.
962  */
963  len = -len;
964  count = 0;
965  for (;;) {
966  count += m->m_len;
967  if (m->m_next == (struct mbuf *)0)
968  break;
969  m = m->m_next;
970  }
971  if (m->m_len >= len) {
972  m->m_len -= len;
973  if (mp->m_flags & M_PKTHDR)
974  mp->m_pkthdr.len -= len;
975  return;
976  }
977  count -= len;
978  if (count < 0)
979  count = 0;
980  /*
981  * Correct length for chain is "count".
982  * Find the mbuf with last data, adjust its length,
983  * and toss data from remaining mbufs on chain.
984  */
985  m = mp;
986  if (m->m_flags & M_PKTHDR)
987  m->m_pkthdr.len = count;
988  for (; m; m = m->m_next) {
989  if (m->m_len >= count) {
990  m->m_len = count;
991  if (m->m_next != NULL) {
992  m_freem(m->m_next);
993  m->m_next = NULL;
994  }
995  break;
996  }
997  count -= m->m_len;
998  }
999  }
1000 }
1001 
1002 /*
1003  * Rearange an mbuf chain so that len bytes are contiguous
1004  * and in the data area of an mbuf (so that mtod and dtom
1005  * will work for a structure of size len). Returns the resulting
1006  * mbuf chain on success, frees it and returns null on failure.
1007  * If there is room, it will add up to max_protohdr-len extra bytes to the
1008  * contiguous region in an attempt to avoid being called next time.
1009  */
1010 struct mbuf *
1011 m_pullup(struct mbuf *n, int len)
1012 {
1013  struct mbuf *m;
1014  int count;
1015  int space;
1016 
1017  /*
1018  * If first mbuf has no cluster, and has room for len bytes
1019  * without shifting current data, pullup into it,
1020  * otherwise allocate a new mbuf to prepend to the chain.
1021  */
1022  if ((n->m_flags & M_EXT) == 0 &&
1023  n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
1024  if (n->m_len >= len)
1025  return (n);
1026  m = n;
1027  n = n->m_next;
1028  len -= m->m_len;
1029  } else {
1030  if (len > MHLEN)
1031  goto bad;
1032  MGET(m, M_DONTWAIT, n->m_type);
1033  if (m == NULL)
1034  goto bad;
1035  m->m_len = 0;
1036  if (n->m_flags & M_PKTHDR)
1037  M_MOVE_PKTHDR(m, n);
1038  }
1039  space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1040  do {
1041  count = min(min(max(len, max_protohdr), space), n->m_len);
1042  bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1043  (u_int)count);
1044  len -= count;
1045  m->m_len += count;
1046  n->m_len -= count;
1047  space -= count;
1048  if (n->m_len)
1049  n->m_data += count;
1050  else
1051  n = m_free(n);
1052  } while (len > 0 && n);
1053  if (len > 0) {
1054  (void) m_free(m);
1055  goto bad;
1056  }
1057  m->m_next = n;
1058  return (m);
1059 bad:
1060  m_freem(n);
1061  mbstat.m_mpfail++; /* XXX: No consistency. */
1062  return (NULL);
1063 }
1064 
1065 /*
1066  * Like m_pullup(), except a new mbuf is always allocated, and we allow
1067  * the amount of empty space before the data in the new mbuf to be specified
1068  * (in the event that the caller expects to prepend later).
1069  */
1071 
1072 struct mbuf *
1073 m_copyup(struct mbuf *n, int len, int dstoff)
1074 {
1075  struct mbuf *m;
1076  int count, space;
1077 
1078  if (len > (MHLEN - dstoff))
1079  goto bad;
1080  MGET(m, M_DONTWAIT, n->m_type);
1081  if (m == NULL)
1082  goto bad;
1083  m->m_len = 0;
1084  if (n->m_flags & M_PKTHDR)
1085  M_MOVE_PKTHDR(m, n);
1086  m->m_data += dstoff;
1087  space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1088  do {
1089  count = min(min(max(len, max_protohdr), space), n->m_len);
1090  memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1091  (unsigned)count);
1092  len -= count;
1093  m->m_len += count;
1094  n->m_len -= count;
1095  space -= count;
1096  if (n->m_len)
1097  n->m_data += count;
1098  else
1099  n = m_free(n);
1100  } while (len > 0 && n);
1101  if (len > 0) {
1102  (void) m_free(m);
1103  goto bad;
1104  }
1105  m->m_next = n;
1106  return (m);
1107  bad:
1108  m_freem(n);
1109  MSFail++;
1110  return (NULL);
1111 }
1112 
1113 /*
1114  * Partition an mbuf chain in two pieces, returning the tail --
1115  * all but the first len0 bytes. In case of failure, it returns NULL and
1116  * attempts to restore the chain to its original state.
1117  *
1118  * Note that the resulting mbufs might be read-only, because the new
1119  * mbuf can end up sharing an mbuf cluster with the original mbuf if
1120  * the "breaking point" happens to lie within a cluster mbuf. Use the
1121  * M_WRITABLE() macro to check for this case.
1122  */
1123 struct mbuf *
1124 m_split(struct mbuf *m0, int len0, int wait)
1125 {
1126  struct mbuf *m, *n;
1127  u_int len = len0, remain;
1128 
1129  MBUF_CHECKSLEEP(wait);
1130  for (m = m0; m && len > m->m_len; m = m->m_next)
1131  len -= m->m_len;
1132  if (m == NULL)
1133  return (NULL);
1134  remain = m->m_len - len;
1135  if (m0->m_flags & M_PKTHDR) {
1136  MGETHDR(n, wait, m0->m_type);
1137  if (n == NULL)
1138  return (NULL);
1139  n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1140  n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1141  m0->m_pkthdr.len = len0;
1142  if (m->m_flags & M_EXT)
1143  goto extpacket;
1144  if (remain > MHLEN) {
1145  /* m can't be the lead packet */
1146  MH_ALIGN(n, 0);
1147  n->m_next = m_split(m, len, wait);
1148  if (n->m_next == NULL) {
1149  (void) m_free(n);
1150  return (NULL);
1151  } else {
1152  n->m_len = 0;
1153  return (n);
1154  }
1155  } else
1156  MH_ALIGN(n, remain);
1157  } else if (remain == 0) {
1158  n = m->m_next;
1159  m->m_next = NULL;
1160  return (n);
1161  } else {
1162  MGET(n, wait, m->m_type);
1163  if (n == NULL)
1164  return (NULL);
1165  M_ALIGN(n, remain);
1166  }
1167 extpacket:
1168  if (m->m_flags & M_EXT) {
1169  n->m_data = m->m_data + len;
1170  mb_dupcl(n, m);
1171  } else {
1172  bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1173  }
1174  n->m_len = remain;
1175  m->m_len = len;
1176  n->m_next = m->m_next;
1177  m->m_next = NULL;
1178  return (n);
1179 }
1180 /*
1181  * Routine to copy from device local memory into mbufs.
1182  * Note that `off' argument is offset into first mbuf of target chain from
1183  * which to begin copying the data to.
1184  */
1185 struct mbuf *
1186 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1187  void (*copy)(char *from, caddr_t to, u_int len))
1188 {
1189  struct mbuf *m;
1190  struct mbuf *top = NULL, **mp = &top;
1191  int len;
1192 
1193  if (off < 0 || off > MHLEN)
1194  return (NULL);
1195 
1196  while (totlen > 0) {
1197  if (top == NULL) { /* First one, must be PKTHDR */
1198  if (totlen + off >= MINCLSIZE) {
1199  m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1200  len = MCLBYTES;
1201  } else {
1202  m = m_gethdr(M_DONTWAIT, MT_DATA);
1203  len = MHLEN;
1204 
1205  /* Place initial small packet/header at end of mbuf */
1206  if (m && totlen + off + max_linkhdr <= MLEN) {
1207  m->m_data += max_linkhdr;
1208  len -= max_linkhdr;
1209  }
1210  }
1211  if (m == NULL)
1212  return NULL;
1213  m->m_pkthdr.rcvif = ifp;
1214  m->m_pkthdr.len = totlen;
1215  } else {
1216  if (totlen + off >= MINCLSIZE) {
1217  m = m_getcl(M_DONTWAIT, MT_DATA, 0);
1218  len = MCLBYTES;
1219  } else {
1220  m = m_get(M_DONTWAIT, MT_DATA);
1221  len = MLEN;
1222  }
1223  if (m == NULL) {
1224  m_freem(top);
1225  return NULL;
1226  }
1227  }
1228  if (off) {
1229  m->m_data += off;
1230  len -= off;
1231  off = 0;
1232  }
1233  m->m_len = len = min(totlen, len);
1234  if (copy)
1235  copy(buf, mtod(m, caddr_t), (u_int)len);
1236  else
1237  bcopy(buf, mtod(m, caddr_t), (u_int)len);
1238  buf += len;
1239  *mp = m;
1240  mp = &m->m_next;
1241  totlen -= len;
1242  }
1243  return (top);
1244 }
1245 
1246 /*
1247  * Copy data from a buffer back into the indicated mbuf chain,
1248  * starting "off" bytes from the beginning, extending the mbuf
1249  * chain if necessary.
1250  */
1251 void
1252 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1253 {
1254  int mlen;
1255  struct mbuf *m = m0, *n;
1256  int totlen = 0;
1257 
1258  if (m0 == NULL)
1259  return;
1260  while (off > (mlen = m->m_len)) {
1261  off -= mlen;
1262  totlen += mlen;
1263  if (m->m_next == NULL) {
1264  n = m_get(M_DONTWAIT, m->m_type);
1265  if (n == NULL)
1266  goto out;
1267  bzero(mtod(n, caddr_t), MLEN);
1268  n->m_len = min(MLEN, len + off);
1269  m->m_next = n;
1270  }
1271  m = m->m_next;
1272  }
1273  while (len > 0) {
1274  if (m->m_next == NULL && (len > m->m_len - off)) {
1275  m->m_len += min(len - (m->m_len - off),
1276  M_TRAILINGSPACE(m));
1277  }
1278  mlen = min (m->m_len - off, len);
1279  bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1280  cp += mlen;
1281  len -= mlen;
1282  mlen += off;
1283  off = 0;
1284  totlen += mlen;
1285  if (len == 0)
1286  break;
1287  if (m->m_next == NULL) {
1288  n = m_get(M_DONTWAIT, m->m_type);
1289  if (n == NULL)
1290  break;
1291  n->m_len = min(MLEN, len);
1292  m->m_next = n;
1293  }
1294  m = m->m_next;
1295  }
1296 out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1297  m->m_pkthdr.len = totlen;
1298 }
1299 
1300 /*
1301  * Append the specified data to the indicated mbuf chain,
1302  * Extend the mbuf chain if the new data does not fit in
1303  * existing space.
1304  *
1305  * Return 1 if able to complete the job; otherwise 0.
1306  */
1307 int
1308 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1309 {
1310  struct mbuf *m, *n;
1311  int remainder, space;
1312 
1313  for (m = m0; m->m_next != NULL; m = m->m_next)
1314  ;
1315  remainder = len;
1316  space = M_TRAILINGSPACE(m);
1317  if (space > 0) {
1318  /*
1319  * Copy into available space.
1320  */
1321  if (space > remainder)
1322  space = remainder;
1323  bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1324  m->m_len += space;
1325  cp += space, remainder -= space;
1326  }
1327  while (remainder > 0) {
1328  /*
1329  * Allocate a new mbuf; could check space
1330  * and allocate a cluster instead.
1331  */
1332  n = m_get(M_DONTWAIT, m->m_type);
1333  if (n == NULL)
1334  break;
1335  n->m_len = min(MLEN, remainder);
1336  bcopy(cp, mtod(n, caddr_t), n->m_len);
1337  cp += n->m_len, remainder -= n->m_len;
1338  m->m_next = n;
1339  m = n;
1340  }
1341  if (m0->m_flags & M_PKTHDR)
1342  m0->m_pkthdr.len += len - remainder;
1343  return (remainder == 0);
1344 }
1345 
1346 /*
1347  * Apply function f to the data in an mbuf chain starting "off" bytes from
1348  * the beginning, continuing for "len" bytes.
1349  */
1350 int
1351 m_apply(struct mbuf *m, int off, int len,
1352  int (*f)(void *, void *, u_int), void *arg)
1353 {
1354  u_int count;
1355  int rval;
1356 
1357  KASSERT(off >= 0, ("m_apply, negative off %d", off));
1358  KASSERT(len >= 0, ("m_apply, negative len %d", len));
1359  while (off > 0) {
1360  KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1361  if (off < m->m_len)
1362  break;
1363  off -= m->m_len;
1364  m = m->m_next;
1365  }
1366  while (len > 0) {
1367  KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1368  count = min(m->m_len - off, len);
1369  rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1370  if (rval)
1371  return (rval);
1372  len -= count;
1373  off = 0;
1374  m = m->m_next;
1375  }
1376  return (0);
1377 }
1378 
1379 /*
1380  * Return a pointer to mbuf/offset of location in mbuf chain.
1381  */
1382 struct mbuf *
1383 m_getptr(struct mbuf *m, int loc, int *off)
1384 {
1385 
1386  while (loc >= 0) {
1387  /* Normal end of search. */
1388  if (m->m_len > loc) {
1389  *off = loc;
1390  return (m);
1391  } else {
1392  loc -= m->m_len;
1393  if (m->m_next == NULL) {
1394  if (loc == 0) {
1395  /* Point at the end of valid data. */
1396  *off = m->m_len;
1397  return (m);
1398  }
1399  return (NULL);
1400  }
1401  m = m->m_next;
1402  }
1403  }
1404  return (NULL);
1405 }
1406 
1407 void
1408 m_print(const struct mbuf *m, int maxlen)
1409 {
1410  int len;
1411  int pdata;
1412  const struct mbuf *m2;
1413 
1414  if (m == NULL) {
1415  printf("mbuf: %p\n", m);
1416  return;
1417  }
1418 
1419  if (m->m_flags & M_PKTHDR)
1420  len = m->m_pkthdr.len;
1421  else
1422  len = -1;
1423  m2 = m;
1424  while (m2 != NULL && (len == -1 || len)) {
1425  pdata = m2->m_len;
1426  if (maxlen != -1 && pdata > maxlen)
1427  pdata = maxlen;
1428  printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1429  m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1430  "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1431  "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1432  if (pdata)
1433  printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1434  if (len != -1)
1435  len -= m2->m_len;
1436  m2 = m2->m_next;
1437  }
1438  if (len > 0)
1439  printf("%d bytes unaccounted for.\n", len);
1440  return;
1441 }
1442 
1443 u_int
1444 m_fixhdr(struct mbuf *m0)
1445 {
1446  u_int len;
1447 
1448  len = m_length(m0, NULL);
1449  m0->m_pkthdr.len = len;
1450  return (len);
1451 }
1452 
1453 u_int
1454 m_length(struct mbuf *m0, struct mbuf **last)
1455 {
1456  struct mbuf *m;
1457  u_int len;
1458 
1459  len = 0;
1460  for (m = m0; m != NULL; m = m->m_next) {
1461  len += m->m_len;
1462  if (m->m_next == NULL)
1463  break;
1464  }
1465  if (last != NULL)
1466  *last = m;
1467  return (len);
1468 }
1469 
1470 /*
1471  * Defragment a mbuf chain, returning the shortest possible
1472  * chain of mbufs and clusters. If allocation fails and
1473  * this cannot be completed, NULL will be returned, but
1474  * the passed in chain will be unchanged. Upon success,
1475  * the original chain will be freed, and the new chain
1476  * will be returned.
1477  *
1478  * If a non-packet header is passed in, the original
1479  * mbuf (chain?) will be returned unharmed.
1480  */
1481 struct mbuf *
1482 m_defrag(struct mbuf *m0, int how)
1483 {
1484  struct mbuf *m_new = NULL, *m_final = NULL;
1485  int progress = 0, length;
1486 
1487  MBUF_CHECKSLEEP(how);
1488  if (!(m0->m_flags & M_PKTHDR))
1489  return (m0);
1490 
1491  m_fixhdr(m0); /* Needed sanity check */
1492 
1493 #ifdef MBUF_STRESS_TEST
1494  if (m_defragrandomfailures) {
1495  int temp = arc4random() & 0xff;
1496  if (temp == 0xba)
1497  goto nospace;
1498  }
1499 #endif
1500 
1501  if (m0->m_pkthdr.len > MHLEN)
1502  m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1503  else
1504  m_final = m_gethdr(how, MT_DATA);
1505 
1506  if (m_final == NULL)
1507  goto nospace;
1508 
1509  if (m_dup_pkthdr(m_final, m0, how) == 0)
1510  goto nospace;
1511 
1512  m_new = m_final;
1513 
1514  while (progress < m0->m_pkthdr.len) {
1515  length = m0->m_pkthdr.len - progress;
1516  if (length > MCLBYTES)
1517  length = MCLBYTES;
1518 
1519  if (m_new == NULL) {
1520  if (length > MLEN)
1521  m_new = m_getcl(how, MT_DATA, 0);
1522  else
1523  m_new = m_get(how, MT_DATA);
1524  if (m_new == NULL)
1525  goto nospace;
1526  }
1527 
1528  m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1529  progress += length;
1530  m_new->m_len = length;
1531  if (m_new != m_final)
1532  m_cat(m_final, m_new);
1533  m_new = NULL;
1534  }
1535 #ifdef MBUF_STRESS_TEST
1536  if (m0->m_next == NULL)
1537  m_defraguseless++;
1538 #endif
1539  m_freem(m0);
1540  m0 = m_final;
1541 #ifdef MBUF_STRESS_TEST
1542  m_defragpackets++;
1543  m_defragbytes += m0->m_pkthdr.len;
1544 #endif
1545  return (m0);
1546 nospace:
1547 #ifdef MBUF_STRESS_TEST
1548  m_defragfailure++;
1549 #endif
1550  if (m_final)
1551  m_freem(m_final);
1552  return (NULL);
1553 }
1554 
1555 /*
1556  * Defragment an mbuf chain, returning at most maxfrags separate
1557  * mbufs+clusters. If this is not possible NULL is returned and
1558  * the original mbuf chain is left in it's present (potentially
1559  * modified) state. We use two techniques: collapsing consecutive
1560  * mbufs and replacing consecutive mbufs by a cluster.
1561  *
1562  * NB: this should really be named m_defrag but that name is taken
1563  */
1564 struct mbuf *
1565 m_collapse(struct mbuf *m0, int how, int maxfrags)
1566 {
1567  struct mbuf *m, *n, *n2, **prev;
1568  u_int curfrags;
1569 
1570  /*
1571  * Calculate the current number of frags.
1572  */
1573  curfrags = 0;
1574  for (m = m0; m != NULL; m = m->m_next)
1575  curfrags++;
1576  /*
1577  * First, try to collapse mbufs. Note that we always collapse
1578  * towards the front so we don't need to deal with moving the
1579  * pkthdr. This may be suboptimal if the first mbuf has much
1580  * less data than the following.
1581  */
1582  m = m0;
1583 again:
1584  for (;;) {
1585  n = m->m_next;
1586  if (n == NULL)
1587  break;
1588  if (M_WRITABLE(m) &&
1589  n->m_len < M_TRAILINGSPACE(m)) {
1590  bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1591  n->m_len);
1592  m->m_len += n->m_len;
1593  m->m_next = n->m_next;
1594  m_free(n);
1595  if (--curfrags <= maxfrags)
1596  return m0;
1597  } else
1598  m = n;
1599  }
1600  KASSERT(maxfrags > 1,
1601  ("maxfrags %u, but normal collapse failed", maxfrags));
1602  /*
1603  * Collapse consecutive mbufs to a cluster.
1604  */
1605  prev = &m0->m_next; /* NB: not the first mbuf */
1606  while ((n = *prev) != NULL) {
1607  if ((n2 = n->m_next) != NULL &&
1608  n->m_len + n2->m_len < MCLBYTES) {
1609  m = m_getcl(how, MT_DATA, 0);
1610  if (m == NULL)
1611  goto bad;
1612  bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1613  bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1614  n2->m_len);
1615  m->m_len = n->m_len + n2->m_len;
1616  m->m_next = n2->m_next;
1617  *prev = m;
1618  m_free(n);
1619  m_free(n2);
1620  if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
1621  return m0;
1622  /*
1623  * Still not there, try the normal collapse
1624  * again before we allocate another cluster.
1625  */
1626  goto again;
1627  }
1628  prev = &n->m_next;
1629  }
1630  /*
1631  * No place where we can collapse to a cluster; punt.
1632  * This can occur if, for example, you request 2 frags
1633  * but the packet requires that both be clusters (we
1634  * never reallocate the first mbuf to avoid moving the
1635  * packet header).
1636  */
1637 bad:
1638  return NULL;
1639 }
1640 
1641 #ifdef MBUF_STRESS_TEST
1642 
1643 /*
1644  * Fragment an mbuf chain. There's no reason you'd ever want to do
1645  * this in normal usage, but it's great for stress testing various
1646  * mbuf consumers.
1647  *
1648  * If fragmentation is not possible, the original chain will be
1649  * returned.
1650  *
1651  * Possible length values:
1652  * 0 no fragmentation will occur
1653  * > 0 each fragment will be of the specified length
1654  * -1 each fragment will be the same random value in length
1655  * -2 each fragment's length will be entirely random
1656  * (Random values range from 1 to 256)
1657  */
1658 struct mbuf *
1659 m_fragment(struct mbuf *m0, int how, int length)
1660 {
1661  struct mbuf *m_new = NULL, *m_final = NULL;
1662  int progress = 0;
1663 
1664  if (!(m0->m_flags & M_PKTHDR))
1665  return (m0);
1666 
1667  if ((length == 0) || (length < -2))
1668  return (m0);
1669 
1670  m_fixhdr(m0); /* Needed sanity check */
1671 
1672  m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1673 
1674  if (m_final == NULL)
1675  goto nospace;
1676 
1677  if (m_dup_pkthdr(m_final, m0, how) == 0)
1678  goto nospace;
1679 
1680  m_new = m_final;
1681 
1682  if (length == -1)
1683  length = 1 + (arc4random() & 255);
1684 
1685  while (progress < m0->m_pkthdr.len) {
1686  int fraglen;
1687 
1688  if (length > 0)
1689  fraglen = length;
1690  else
1691  fraglen = 1 + (arc4random() & 255);
1692  if (fraglen > m0->m_pkthdr.len - progress)
1693  fraglen = m0->m_pkthdr.len - progress;
1694 
1695  if (fraglen > MCLBYTES)
1696  fraglen = MCLBYTES;
1697 
1698  if (m_new == NULL) {
1699  m_new = m_getcl(how, MT_DATA, 0);
1700  if (m_new == NULL)
1701  goto nospace;
1702  }
1703 
1704  m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t));
1705  progress += fraglen;
1706  m_new->m_len = fraglen;
1707  if (m_new != m_final)
1708  m_cat(m_final, m_new);
1709  m_new = NULL;
1710  }
1711  m_freem(m0);
1712  m0 = m_final;
1713  return (m0);
1714 nospace:
1715  if (m_final)
1716  m_freem(m_final);
1717  /* Return the original chain on failure */
1718  return (m0);
1719 }
1720 
1721 #endif
1722 
1723 /*
1724  * Copy the contents of uio into a properly sized mbuf chain.
1725  */
1726 struct mbuf *
1727 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1728 {
1729  struct mbuf *m, *mb;
1730  int error, length;
1731  ssize_t total;
1732  int progress = 0;
1733 
1734  /*
1735  * len can be zero or an arbitrary large value bound by
1736  * the total data supplied by the uio.
1737  */
1738  if (len > 0)
1739  total = min(uio->uio_resid, len);
1740  else
1741  total = uio->uio_resid;
1742 
1743  /*
1744  * The smallest unit returned by m_getm2() is a single mbuf
1745  * with pkthdr. We can't align past it.
1746  */
1747  if (align >= MHLEN)
1748  return (NULL);
1749 
1750  /*
1751  * Give us the full allocation or nothing.
1752  * If len is zero return the smallest empty mbuf.
1753  */
1754  m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1755  if (m == NULL)
1756  return (NULL);
1757  m->m_data += align;
1758 
1759  /* Fill all mbufs with uio data and update header information. */
1760  for (mb = m; mb != NULL; mb = mb->m_next) {
1761  length = min(M_TRAILINGSPACE(mb), total - progress);
1762 
1763  error = uiomove(mtod(mb, void *), length, uio);
1764  if (error) {
1765  m_freem(m);
1766  return (NULL);
1767  }
1768 
1769  mb->m_len = length;
1770  progress += length;
1771  if (flags & M_PKTHDR)
1772  m->m_pkthdr.len += length;
1773  }
1774  KASSERT(progress == total, ("%s: progress != total", __func__));
1775 
1776  return (m);
1777 }
1778 
1779 /*
1780  * Copy an mbuf chain into a uio limited by len if set.
1781  */
1782 int
1783 m_mbuftouio(struct uio *uio, struct mbuf *m, int len)
1784 {
1785  int error, length, total;
1786  int progress = 0;
1787 
1788  if (len > 0)
1789  total = min(uio->uio_resid, len);
1790  else
1791  total = uio->uio_resid;
1792 
1793  /* Fill the uio with data from the mbufs. */
1794  for (; m != NULL; m = m->m_next) {
1795  length = min(m->m_len, total - progress);
1796 
1797  error = uiomove(mtod(m, void *), length, uio);
1798  if (error)
1799  return (error);
1800 
1801  progress += length;
1802  }
1803 
1804  return (0);
1805 }
1806 
1807 /*
1808  * Set the m_data pointer of a newly-allocated mbuf
1809  * to place an object of the specified size at the
1810  * end of the mbuf, longword aligned.
1811  */
1812 void
1813 m_align(struct mbuf *m, int len)
1814 {
1815  int adjust;
1816 
1817  if (m->m_flags & M_EXT)
1818  adjust = m->m_ext.ext_size - len;
1819  else if (m->m_flags & M_PKTHDR)
1820  adjust = MHLEN - len;
1821  else
1822  adjust = MLEN - len;
1823  m->m_data += adjust &~ (sizeof(long)-1);
1824 }
1825 
1826 /*
1827  * Create a writable copy of the mbuf chain. While doing this
1828  * we compact the chain with a goal of producing a chain with
1829  * at most two mbufs. The second mbuf in this chain is likely
1830  * to be a cluster. The primary purpose of this work is to create
1831  * a writable packet for encryption, compression, etc. The
1832  * secondary goal is to linearize the data so the data can be
1833  * passed to crypto hardware in the most efficient manner possible.
1834  */
1835 struct mbuf *
1836 m_unshare(struct mbuf *m0, int how)
1837 {
1838  struct mbuf *m, *mprev;
1839  struct mbuf *n, *mfirst, *mlast;
1840  int len, off;
1841 
1842  mprev = NULL;
1843  for (m = m0; m != NULL; m = mprev->m_next) {
1844  /*
1845  * Regular mbufs are ignored unless there's a cluster
1846  * in front of it that we can use to coalesce. We do
1847  * the latter mainly so later clusters can be coalesced
1848  * also w/o having to handle them specially (i.e. convert
1849  * mbuf+cluster -> cluster). This optimization is heavily
1850  * influenced by the assumption that we're running over
1851  * Ethernet where MCLBYTES is large enough that the max
1852  * packet size will permit lots of coalescing into a
1853  * single cluster. This in turn permits efficient
1854  * crypto operations, especially when using hardware.
1855  */
1856  if ((m->m_flags & M_EXT) == 0) {
1857  if (mprev && (mprev->m_flags & M_EXT) &&
1858  m->m_len <= M_TRAILINGSPACE(mprev)) {
1859  /* XXX: this ignores mbuf types */
1860  memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1861  mtod(m, caddr_t), m->m_len);
1862  mprev->m_len += m->m_len;
1863  mprev->m_next = m->m_next; /* unlink from chain */
1864  m_free(m); /* reclaim mbuf */
1865 #if 0
1866  newipsecstat.ips_mbcoalesced++;
1867 #endif
1868  } else {
1869  mprev = m;
1870  }
1871  continue;
1872  }
1873  /*
1874  * Writable mbufs are left alone (for now).
1875  */
1876  if (M_WRITABLE(m)) {
1877  mprev = m;
1878  continue;
1879  }
1880 
1881  /*
1882  * Not writable, replace with a copy or coalesce with
1883  * the previous mbuf if possible (since we have to copy
1884  * it anyway, we try to reduce the number of mbufs and
1885  * clusters so that future work is easier).
1886  */
1887  KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1888  /* NB: we only coalesce into a cluster or larger */
1889  if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1890  m->m_len <= M_TRAILINGSPACE(mprev)) {
1891  /* XXX: this ignores mbuf types */
1892  memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1893  mtod(m, caddr_t), m->m_len);
1894  mprev->m_len += m->m_len;
1895  mprev->m_next = m->m_next; /* unlink from chain */
1896  m_free(m); /* reclaim mbuf */
1897 #if 0
1898  newipsecstat.ips_clcoalesced++;
1899 #endif
1900  continue;
1901  }
1902 
1903  /*
1904  * Allocate new space to hold the copy...
1905  */
1906  /* XXX why can M_PKTHDR be set past the first mbuf? */
1907  if (mprev == NULL && (m->m_flags & M_PKTHDR)) {
1908  /*
1909  * NB: if a packet header is present we must
1910  * allocate the mbuf separately from any cluster
1911  * because M_MOVE_PKTHDR will smash the data
1912  * pointer and drop the M_EXT marker.
1913  */
1914  MGETHDR(n, how, m->m_type);
1915  if (n == NULL) {
1916  m_freem(m0);
1917  return (NULL);
1918  }
1919  M_MOVE_PKTHDR(n, m);
1920  MCLGET(n, how);
1921  if ((n->m_flags & M_EXT) == 0) {
1922  m_free(n);
1923  m_freem(m0);
1924  return (NULL);
1925  }
1926  } else {
1927  n = m_getcl(how, m->m_type, m->m_flags);
1928  if (n == NULL) {
1929  m_freem(m0);
1930  return (NULL);
1931  }
1932  }
1933  /*
1934  * ... and copy the data. We deal with jumbo mbufs
1935  * (i.e. m_len > MCLBYTES) by splitting them into
1936  * clusters. We could just malloc a buffer and make
1937  * it external but too many device drivers don't know
1938  * how to break up the non-contiguous memory when
1939  * doing DMA.
1940  */
1941  len = m->m_len;
1942  off = 0;
1943  mfirst = n;
1944  mlast = NULL;
1945  for (;;) {
1946  int cc = min(len, MCLBYTES);
1947  memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
1948  n->m_len = cc;
1949  if (mlast != NULL)
1950  mlast->m_next = n;
1951  mlast = n;
1952 #if 0
1953  newipsecstat.ips_clcopied++;
1954 #endif
1955 
1956  len -= cc;
1957  if (len <= 0)
1958  break;
1959  off += cc;
1960 
1961  n = m_getcl(how, m->m_type, m->m_flags);
1962  if (n == NULL) {
1963  m_freem(mfirst);
1964  m_freem(m0);
1965  return (NULL);
1966  }
1967  }
1968  n->m_next = m->m_next;
1969  if (mprev == NULL)
1970  m0 = mfirst; /* new head of chain */
1971  else
1972  mprev->m_next = mfirst; /* replace old mbuf */
1973  m_free(m); /* release old mbuf */
1974  mprev = mfirst;
1975  }
1976  return (m0);
1977 }
1978 
1979 #ifdef MBUF_PROFILING
1980 
1981 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
1982 struct mbufprofile {
1983  uintmax_t wasted[MP_BUCKETS];
1984  uintmax_t used[MP_BUCKETS];
1985  uintmax_t segments[MP_BUCKETS];
1986 } mbprof;
1987 
1988 #define MP_MAXDIGITS 21 /* strlen("16,000,000,000,000,000,000") == 21 */
1989 #define MP_NUMLINES 6
1990 #define MP_NUMSPERLINE 16
1991 #define MP_EXTRABYTES 64 /* > strlen("used:\nwasted:\nsegments:\n") */
1992 /* work out max space needed and add a bit of spare space too */
1993 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
1994 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
1995 
1996 char mbprofbuf[MP_BUFSIZE];
1997 
1998 void
1999 m_profile(struct mbuf *m)
2000 {
2001  int segments = 0;
2002  int used = 0;
2003  int wasted = 0;
2004 
2005  while (m) {
2006  segments++;
2007  used += m->m_len;
2008  if (m->m_flags & M_EXT) {
2009  wasted += MHLEN - sizeof(m->m_ext) +
2010  m->m_ext.ext_size - m->m_len;
2011  } else {
2012  if (m->m_flags & M_PKTHDR)
2013  wasted += MHLEN - m->m_len;
2014  else
2015  wasted += MLEN - m->m_len;
2016  }
2017  m = m->m_next;
2018  }
2019  /* be paranoid.. it helps */
2020  if (segments > MP_BUCKETS - 1)
2021  segments = MP_BUCKETS - 1;
2022  if (used > 100000)
2023  used = 100000;
2024  if (wasted > 100000)
2025  wasted = 100000;
2026  /* store in the appropriate bucket */
2027  /* don't bother locking. if it's slightly off, so what? */
2028  mbprof.segments[segments]++;
2029  mbprof.used[fls(used)]++;
2030  mbprof.wasted[fls(wasted)]++;
2031 }
2032 
2033 static void
2034 mbprof_textify(void)
2035 {
2036  int offset;
2037  char *c;
2038  uint64_t *p;
2039 
2040 
2041  p = &mbprof.wasted[0];
2042  c = mbprofbuf;
2043  offset = snprintf(c, MP_MAXLINE + 10,
2044  "wasted:\n"
2045  "%ju %ju %ju %ju %ju %ju %ju %ju "
2046  "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2047  p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2048  p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2049 #ifdef BIG_ARRAY
2050  p = &mbprof.wasted[16];
2051  c += offset;
2052  offset = snprintf(c, MP_MAXLINE,
2053  "%ju %ju %ju %ju %ju %ju %ju %ju "
2054  "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2055  p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2056  p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2057 #endif
2058  p = &mbprof.used[0];
2059  c += offset;
2060  offset = snprintf(c, MP_MAXLINE + 10,
2061  "used:\n"
2062  "%ju %ju %ju %ju %ju %ju %ju %ju "
2063  "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2064  p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2065  p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2066 #ifdef BIG_ARRAY
2067  p = &mbprof.used[16];
2068  c += offset;
2069  offset = snprintf(c, MP_MAXLINE,
2070  "%ju %ju %ju %ju %ju %ju %ju %ju "
2071  "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2072  p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2073  p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2074 #endif
2075  p = &mbprof.segments[0];
2076  c += offset;
2077  offset = snprintf(c, MP_MAXLINE + 10,
2078  "segments:\n"
2079  "%ju %ju %ju %ju %ju %ju %ju %ju "
2080  "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2081  p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2082  p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2083 #ifdef BIG_ARRAY
2084  p = &mbprof.segments[16];
2085  c += offset;
2086  offset = snprintf(c, MP_MAXLINE,
2087  "%ju %ju %ju %ju %ju %ju %ju %ju "
2088  "%ju %ju %ju %ju %ju %ju %ju %jju",
2089  p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2090  p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2091 #endif
2092 }
2093 
2094 static int
2095 mbprof_handler(SYSCTL_HANDLER_ARGS)
2096 {
2097  int error;
2098 
2099  mbprof_textify();
2100  error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2101  return (error);
2102 }
2103 
2104 static int
2105 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2106 {
2107  int clear, error;
2108 
2109  clear = 0;
2110  error = sysctl_handle_int(oidp, &clear, 0, req);
2111  if (error || !req->newptr)
2112  return (error);
2113 
2114  if (clear) {
2115  bzero(&mbprof, sizeof(mbprof));
2116  }
2117 
2118  return (error);
2119 }
2120 
2121 
2122 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
2123  NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
2124 
2125 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
2126  NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
2127 #endif
2128 
int m_append(struct mbuf *m0, int len, c_caddr_t cp)
Definition: uipc_mbuf.c:1308
void m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
Definition: uipc_mbuf.c:1252
int m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
Definition: uipc_mbuf.c:459
int m_apply(struct mbuf *m, int off, int len, int(*f)(void *, void *, u_int), void *arg)
Definition: uipc_mbuf.c:1351
struct buf * buf
Definition: vfs_bio.c:97
struct mbuf * m_unshare(struct mbuf *m0, int how)
Definition: uipc_mbuf.c:1836
int snprintf(char *str, size_t size, const char *format,...)
Definition: subr_prf.c:509
struct mbuf * m_collapse(struct mbuf *m0, int how, int maxfrags)
Definition: uipc_mbuf.c:1565
uma_zone_t zone_ext_refcnt
Definition: kern_mbuf.c:277
int max_datalen
Definition: uipc_mbuf.c:54
struct mbuf * m_split(struct mbuf *m0, int len0, int wait)
Definition: uipc_mbuf.c:1124
struct mbuf * m_getm2(struct mbuf *m, int len, int how, short type, int flags)
Definition: uipc_mbuf.c:95
int m_sanity(struct mbuf *m0, int sanitize)
Definition: uipc_mbuf.c:342
int max_linkhdr
Definition: uipc_mbuf.c:51
struct mbuf * m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
Definition: uipc_mbuf.c:1727
u_int m_fixhdr(struct mbuf *m0)
Definition: uipc_mbuf.c:1444
void m_freem(struct mbuf *mb)
Definition: uipc_mbuf.c:157
int max_protohdr
Definition: uipc_mbuf.c:52
int * type
Definition: cpufreq_if.m:98
int MSFail
Definition: uipc_mbuf.c:1070
struct mbuf * m_copym(struct mbuf *m, int off0, int len, int wait)
Definition: uipc_mbuf.c:528
void m_move_pkthdr(struct mbuf *to, struct mbuf *from)
Definition: uipc_mbuf.c:428
struct mbuf * m_pullup(struct mbuf *n, int len)
Definition: uipc_mbuf.c:1011
void m_demote(struct mbuf *m0, int all)
Definition: uipc_mbuf.c:314
uma_zone_t zone_mbuf
Definition: kern_mbuf.c:271
void m_extadd(struct mbuf *mb, caddr_t buf, u_int size, void(*freef)(void *, void *), void *arg1, void *arg2, int flags, int type)
Definition: uipc_mbuf.c:186
void m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
Definition: uipc_mbuf.c:804
struct mbuf * m_copypacket(struct mbuf *m, int how)
Definition: uipc_mbuf.c:752
int m_mbuftouio(struct uio *uio, struct mbuf *m, int len)
Definition: uipc_mbuf.c:1783
uma_zone_t zone_jumbop
Definition: kern_mbuf.c:274
int m_tag_copy_chain(struct mbuf *to, struct mbuf *from, int how)
Definition: uipc_mbuf2.c:432
static int m_bcopyxxx(void *s, void *t, u_int len)
Definition: uipc_mbuf.c:606
int sysctl_handle_int(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:986
struct mbuf * m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len, int prep, int how)
Definition: uipc_mbuf.c:613
struct mbuf * m_dup(struct mbuf *m, int how)
Definition: uipc_mbuf.c:834
struct mbuf * m_prepend(struct mbuf *m, int len, int how)
Definition: uipc_mbuf.c:493
void m_adj(struct mbuf *mp, int req_len)
Definition: uipc_mbuf.c:930
struct mbuf * m_copyup(struct mbuf *n, int len, int dstoff)
Definition: uipc_mbuf.c:1073
uma_zone_t zone_pack
Definition: kern_mbuf.c:273
SYSCTL_PROC(_kern, OID_AUTO, acct_chkfreq, CTLTYPE_INT|CTLFLAG_RW,&acctchkfreq, 0, sysctl_acct_chkfreq,"I","frequency for checking the free space")
struct mbuf * m_devget(char *buf, int totlen, int off, struct ifnet *ifp, void(*copy)(char *from, caddr_t to, u_int len))
Definition: uipc_mbuf.c:1186
int uiomove(void *cp, int n, struct uio *uio)
Definition: subr_uio.c:202
uma_zone_t zone_jumbo16
Definition: kern_mbuf.c:276
int printf(const char *fmt,...)
Definition: subr_prf.c:367
uma_zone_t zone_clust
Definition: kern_mbuf.c:272
SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,&max_linkhdr, 0,"Size of largest link layer header")
void m_cat(struct mbuf *m, struct mbuf *n)
Definition: uipc_mbuf.c:910
void mb_free_ext(struct mbuf *m)
Definition: uipc_mbuf.c:211
void m_print(const struct mbuf *m, int maxlen)
Definition: uipc_mbuf.c:1408
u_int m_length(struct mbuf *m0, struct mbuf **last)
Definition: uipc_mbuf.c:1454
#define M_SANITY_ACTION(s)
int max_hdr
Definition: uipc_mbuf.c:53
struct mbuf * m_defrag(struct mbuf *m0, int how)
Definition: uipc_mbuf.c:1482
uma_zone_t zone_jumbo9
Definition: kern_mbuf.c:275
struct mbstat mbstat
Definition: kern_mbuf.c:105
static void mb_dupcl(struct mbuf *n, struct mbuf *m)
Definition: uipc_mbuf.c:287
__FBSDID("$BSDSUniX$")
void m_align(struct mbuf *m, int len)
Definition: uipc_mbuf.c:1813
struct mbuf * m_getptr(struct mbuf *m, int loc, int *off)
Definition: uipc_mbuf.c:1383
int * count
Definition: cpufreq_if.m:63
void m_tag_delete_chain(struct mbuf *m, struct m_tag *t)
Definition: uipc_mbuf2.c:344