FreeBSD kernel kern code
subr_smp.c
Go to the documentation of this file.
1 /*-
2  * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  * notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  * notice, this list of conditions and the following disclaimer in the
12  * documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * This module holds the global variables and machine independent functions
29  * used for the kernel SMP support.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$BSDSUniX$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/ktr.h>
39 #include <sys/proc.h>
40 #include <sys/bus.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/pcpu.h>
44 #include <sys/smp.h>
45 #include <sys/sysctl.h>
46 
47 #include <machine/cpu.h>
48 #include <machine/smp.h>
49 
50 #include "opt_sched.h"
51 
52 #ifdef SMP
53 volatile cpuset_t stopped_cpus;
54 volatile cpuset_t started_cpus;
55 cpuset_t hlt_cpus_mask;
56 cpuset_t logical_cpus_mask;
57 
58 void (*cpustop_restartfunc)(void);
59 #endif
60 /* This is used in modules that need to work in both SMP and UP. */
61 cpuset_t all_cpus;
62 
64 /* export this for libkvm consumers. */
65 int mp_maxcpus = MAXCPU;
66 
67 volatile int smp_started;
68 u_int mp_maxid;
69 
70 static SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD|CTLFLAG_CAPRD, NULL,
71  "Kernel SMP");
72 
73 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0,
74  "Max CPU ID.");
75 
76 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus,
77  0, "Max number of CPUs that the system was compiled for.");
78 
79 int smp_active = 0; /* are the APs allowed to run? */
80 SYSCTL_INT(_kern_smp, OID_AUTO, active, CTLFLAG_RW, &smp_active, 0,
81  "Number of Auxillary Processors (APs) that were successfully started");
82 
83 int smp_disabled = 0; /* has smp been disabled? */
84 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD,
85  &smp_disabled, 0, "SMP has been disabled from the loader");
86 TUNABLE_INT("kern.smp.disabled", &smp_disabled);
87 
88 int smp_cpus = 1; /* how many cpu's running */
89 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0,
90  "Number of CPUs online");
91 
92 int smp_topology = 0; /* Which topology we're using. */
93 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RD, &smp_topology, 0,
94  "Topology override setting; 0 is default provided by hardware.");
95 TUNABLE_INT("kern.smp.topology", &smp_topology);
96 
97 #ifdef SMP
98 /* Enable forwarding of a signal to a process running on a different CPU */
99 static int forward_signal_enabled = 1;
100 SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
101  &forward_signal_enabled, 0,
102  "Forwarding of a signal to a process on a different CPU");
103 
104 /* Variables needed for SMP rendezvous. */
105 static volatile int smp_rv_ncpus;
106 static void (*volatile smp_rv_setup_func)(void *arg);
107 static void (*volatile smp_rv_action_func)(void *arg);
108 static void (*volatile smp_rv_teardown_func)(void *arg);
109 static void *volatile smp_rv_func_arg;
110 static volatile int smp_rv_waiters[4];
111 
112 /*
113  * Shared mutex to restrict busywaits between smp_rendezvous() and
114  * smp(_targeted)_tlb_shootdown(). A deadlock occurs if both of these
115  * functions trigger at once and cause multiple CPUs to busywait with
116  * interrupts disabled.
117  */
118 struct mtx smp_ipi_mtx;
119 
120 /*
121  * Let the MD SMP code initialize mp_maxid very early if it can.
122  */
123 static void
124 mp_setmaxid(void *dummy)
125 {
126  cpu_mp_setmaxid();
127 }
128 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
129 
130 /*
131  * Call the MD SMP initialization code.
132  */
133 static void
134 mp_start(void *dummy)
135 {
136 
137  mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
138 
139  /* Probe for MP hardware. */
140  if (smp_disabled != 0 || cpu_mp_probe() == 0) {
141  mp_ncpus = 1;
142  CPU_SETOF(PCPU_GET(cpuid), &all_cpus);
143  return;
144  }
145 
146  cpu_mp_start();
147  printf("BSDSUniX/SMP: Multiprocessor System Detected: %d CPUs\n",
148  mp_ncpus);
149  cpu_mp_announce();
150 }
151 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
152 
153 void
154 forward_signal(struct thread *td)
155 {
156  int id;
157 
158  /*
159  * signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
160  * this thread, so all we need to do is poke it if it is currently
161  * executing so that it executes ast().
162  */
163  THREAD_LOCK_ASSERT(td, MA_OWNED);
164  KASSERT(TD_IS_RUNNING(td),
165  ("forward_signal: thread is not TDS_RUNNING"));
166 
167  CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
168 
169  if (!smp_started || cold || panicstr)
170  return;
171  if (!forward_signal_enabled)
172  return;
173 
174  /* No need to IPI ourself. */
175  if (td == curthread)
176  return;
177 
178  id = td->td_oncpu;
179  if (id == NOCPU)
180  return;
181  ipi_cpu(id, IPI_AST);
182 }
183 
184 /*
185  * When called the executing CPU will send an IPI to all other CPUs
186  * requesting that they halt execution.
187  *
188  * Usually (but not necessarily) called with 'other_cpus' as its arg.
189  *
190  * - Signals all CPUs in map to stop.
191  * - Waits for each to stop.
192  *
193  * Returns:
194  * -1: error
195  * 0: NA
196  * 1: ok
197  *
198  */
199 static int
200 generic_stop_cpus(cpuset_t map, u_int type)
201 {
202 #ifdef KTR
203  char cpusetbuf[CPUSETBUFSIZ];
204 #endif
205  static volatile u_int stopping_cpu = NOCPU;
206  int i;
207 
208  KASSERT(
209 #if defined(__amd64__) || defined(__i386__)
210  type == IPI_STOP || type == IPI_STOP_HARD || type == IPI_SUSPEND,
211 #else
212  type == IPI_STOP || type == IPI_STOP_HARD,
213 #endif
214  ("%s: invalid stop type", __func__));
215 
216  if (!smp_started)
217  return (0);
218 
219  CTR2(KTR_SMP, "stop_cpus(%s) with %u type",
220  cpusetobj_strprint(cpusetbuf, &map), type);
221 
222  if (stopping_cpu != PCPU_GET(cpuid))
223  while (atomic_cmpset_int(&stopping_cpu, NOCPU,
224  PCPU_GET(cpuid)) == 0)
225  while (stopping_cpu != NOCPU)
226  cpu_spinwait(); /* spin */
227 
228  /* send the stop IPI to all CPUs in map */
229  ipi_selected(map, type);
230 
231  i = 0;
232  while (!CPU_SUBSET(&stopped_cpus, &map)) {
233  /* spin */
234  cpu_spinwait();
235  i++;
236  if (i == 100000000) {
237  printf("timeout stopping cpus\n");
238  break;
239  }
240  }
241 
242  stopping_cpu = NOCPU;
243  return (1);
244 }
245 
246 int
247 stop_cpus(cpuset_t map)
248 {
249 
250  return (generic_stop_cpus(map, IPI_STOP));
251 }
252 
253 int
254 stop_cpus_hard(cpuset_t map)
255 {
256 
257  return (generic_stop_cpus(map, IPI_STOP_HARD));
258 }
259 
260 #if defined(__amd64__) || defined(__i386__)
261 int
262 suspend_cpus(cpuset_t map)
263 {
264 
265  return (generic_stop_cpus(map, IPI_SUSPEND));
266 }
267 #endif
268 
269 /*
270  * Called by a CPU to restart stopped CPUs.
271  *
272  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
273  *
274  * - Signals all CPUs in map to restart.
275  * - Waits for each to restart.
276  *
277  * Returns:
278  * -1: error
279  * 0: NA
280  * 1: ok
281  */
282 int
283 restart_cpus(cpuset_t map)
284 {
285 #ifdef KTR
286  char cpusetbuf[CPUSETBUFSIZ];
287 #endif
288 
289  if (!smp_started)
290  return 0;
291 
292  CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
293 
294  /* signal other cpus to restart */
295  CPU_COPY_STORE_REL(&map, &started_cpus);
296 
297  /* wait for each to clear its bit */
298  while (CPU_OVERLAP(&stopped_cpus, &map))
299  cpu_spinwait();
300 
301  return 1;
302 }
303 
304 /*
305  * All-CPU rendezvous. CPUs are signalled, all execute the setup function
306  * (if specified), rendezvous, execute the action function (if specified),
307  * rendezvous again, execute the teardown function (if specified), and then
308  * resume.
309  *
310  * Note that the supplied external functions _must_ be reentrant and aware
311  * that they are running in parallel and in an unknown lock context.
312  */
313 void
314 smp_rendezvous_action(void)
315 {
316  struct thread *td;
317  void *local_func_arg;
318  void (*local_setup_func)(void*);
319  void (*local_action_func)(void*);
320  void (*local_teardown_func)(void*);
321 #ifdef INVARIANTS
322  int owepreempt;
323 #endif
324 
325  /* Ensure we have up-to-date values. */
326  atomic_add_acq_int(&smp_rv_waiters[0], 1);
327  while (smp_rv_waiters[0] < smp_rv_ncpus)
328  cpu_spinwait();
329 
330  /* Fetch rendezvous parameters after acquire barrier. */
331  local_func_arg = smp_rv_func_arg;
332  local_setup_func = smp_rv_setup_func;
333  local_action_func = smp_rv_action_func;
334  local_teardown_func = smp_rv_teardown_func;
335 
336  /*
337  * Use a nested critical section to prevent any preemptions
338  * from occurring during a rendezvous action routine.
339  * Specifically, if a rendezvous handler is invoked via an IPI
340  * and the interrupted thread was in the critical_exit()
341  * function after setting td_critnest to 0 but before
342  * performing a deferred preemption, this routine can be
343  * invoked with td_critnest set to 0 and td_owepreempt true.
344  * In that case, a critical_exit() during the rendezvous
345  * action would trigger a preemption which is not permitted in
346  * a rendezvous action. To fix this, wrap all of the
347  * rendezvous action handlers in a critical section. We
348  * cannot use a regular critical section however as having
349  * critical_exit() preempt from this routine would also be
350  * problematic (the preemption must not occur before the IPI
351  * has been acknowledged via an EOI). Instead, we
352  * intentionally ignore td_owepreempt when leaving the
353  * critical section. This should be harmless because we do
354  * not permit rendezvous action routines to schedule threads,
355  * and thus td_owepreempt should never transition from 0 to 1
356  * during this routine.
357  */
358  td = curthread;
359  td->td_critnest++;
360 #ifdef INVARIANTS
361  owepreempt = td->td_owepreempt;
362 #endif
363 
364  /*
365  * If requested, run a setup function before the main action
366  * function. Ensure all CPUs have completed the setup
367  * function before moving on to the action function.
368  */
369  if (local_setup_func != smp_no_rendevous_barrier) {
370  if (smp_rv_setup_func != NULL)
371  smp_rv_setup_func(smp_rv_func_arg);
372  atomic_add_int(&smp_rv_waiters[1], 1);
373  while (smp_rv_waiters[1] < smp_rv_ncpus)
374  cpu_spinwait();
375  }
376 
377  if (local_action_func != NULL)
378  local_action_func(local_func_arg);
379 
380  if (local_teardown_func != smp_no_rendevous_barrier) {
381  /*
382  * Signal that the main action has been completed. If a
383  * full exit rendezvous is requested, then all CPUs will
384  * wait here until all CPUs have finished the main action.
385  */
386  atomic_add_int(&smp_rv_waiters[2], 1);
387  while (smp_rv_waiters[2] < smp_rv_ncpus)
388  cpu_spinwait();
389 
390  if (local_teardown_func != NULL)
391  local_teardown_func(local_func_arg);
392  }
393 
394  /*
395  * Signal that the rendezvous is fully completed by this CPU.
396  * This means that no member of smp_rv_* pseudo-structure will be
397  * accessed by this target CPU after this point; in particular,
398  * memory pointed by smp_rv_func_arg.
399  */
400  atomic_add_int(&smp_rv_waiters[3], 1);
401 
402  td->td_critnest--;
403  KASSERT(owepreempt == td->td_owepreempt,
404  ("rendezvous action changed td_owepreempt"));
405 }
406 
407 void
408 smp_rendezvous_cpus(cpuset_t map,
409  void (* setup_func)(void *),
410  void (* action_func)(void *),
411  void (* teardown_func)(void *),
412  void *arg)
413 {
414  int curcpumap, i, ncpus = 0;
415 
416  /* Look comments in the !SMP case. */
417  if (!smp_started) {
418  spinlock_enter();
419  if (setup_func != NULL)
420  setup_func(arg);
421  if (action_func != NULL)
422  action_func(arg);
423  if (teardown_func != NULL)
424  teardown_func(arg);
425  spinlock_exit();
426  return;
427  }
428 
429  CPU_FOREACH(i) {
430  if (CPU_ISSET(i, &map))
431  ncpus++;
432  }
433  if (ncpus == 0)
434  panic("ncpus is 0 with non-zero map");
435 
436  mtx_lock_spin(&smp_ipi_mtx);
437 
438  /* Pass rendezvous parameters via global variables. */
439  smp_rv_ncpus = ncpus;
440  smp_rv_setup_func = setup_func;
441  smp_rv_action_func = action_func;
442  smp_rv_teardown_func = teardown_func;
443  smp_rv_func_arg = arg;
444  smp_rv_waiters[1] = 0;
445  smp_rv_waiters[2] = 0;
446  smp_rv_waiters[3] = 0;
447  atomic_store_rel_int(&smp_rv_waiters[0], 0);
448 
449  /*
450  * Signal other processors, which will enter the IPI with
451  * interrupts off.
452  */
453  curcpumap = CPU_ISSET(curcpu, &map);
454  CPU_CLR(curcpu, &map);
455  ipi_selected(map, IPI_RENDEZVOUS);
456 
457  /* Check if the current CPU is in the map */
458  if (curcpumap != 0)
459  smp_rendezvous_action();
460 
461  /*
462  * Ensure that the master CPU waits for all the other
463  * CPUs to finish the rendezvous, so that smp_rv_*
464  * pseudo-structure and the arg are guaranteed to not
465  * be in use.
466  */
467  while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus)
468  cpu_spinwait();
469 
470  mtx_unlock_spin(&smp_ipi_mtx);
471 }
472 
473 void
474 smp_rendezvous(void (* setup_func)(void *),
475  void (* action_func)(void *),
476  void (* teardown_func)(void *),
477  void *arg)
478 {
479  smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
480 }
481 
482 static struct cpu_group group[MAXCPU];
483 
484 struct cpu_group *
485 smp_topo(void)
486 {
487  char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
488  struct cpu_group *top;
489 
490  /*
491  * Check for a fake topology request for debugging purposes.
492  */
493  switch (smp_topology) {
494  case 1:
495  /* Dual core with no sharing. */
496  top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
497  break;
498  case 2:
499  /* No topology, all cpus are equal. */
500  top = smp_topo_none();
501  break;
502  case 3:
503  /* Dual core with shared L2. */
504  top = smp_topo_1level(CG_SHARE_L2, 2, 0);
505  break;
506  case 4:
507  /* quad core, shared l3 among each package, private l2. */
508  top = smp_topo_1level(CG_SHARE_L3, 4, 0);
509  break;
510  case 5:
511  /* quad core, 2 dualcore parts on each package share l2. */
512  top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
513  break;
514  case 6:
515  /* Single-core 2xHTT */
516  top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
517  break;
518  case 7:
519  /* quad core with a shared l3, 8 threads sharing L2. */
520  top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
521  CG_FLAG_SMT);
522  break;
523  default:
524  /* Default, ask the system what it wants. */
525  top = cpu_topo();
526  break;
527  }
528  /*
529  * Verify the returned topology.
530  */
531  if (top->cg_count != mp_ncpus)
532  panic("Built bad topology at %p. CPU count %d != %d",
533  top, top->cg_count, mp_ncpus);
534  if (CPU_CMP(&top->cg_mask, &all_cpus))
535  panic("Built bad topology at %p. CPU mask (%s) != (%s)",
536  top, cpusetobj_strprint(cpusetbuf, &top->cg_mask),
537  cpusetobj_strprint(cpusetbuf2, &all_cpus));
538  return (top);
539 }
540 
541 struct cpu_group *
542 smp_topo_none(void)
543 {
544  struct cpu_group *top;
545 
546  top = &group[0];
547  top->cg_parent = NULL;
548  top->cg_child = NULL;
549  top->cg_mask = all_cpus;
550  top->cg_count = mp_ncpus;
551  top->cg_children = 0;
552  top->cg_level = CG_SHARE_NONE;
553  top->cg_flags = 0;
554 
555  return (top);
556 }
557 
558 static int
559 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
560  int count, int flags, int start)
561 {
562  char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
563  cpuset_t mask;
564  int i;
565 
566  CPU_ZERO(&mask);
567  for (i = 0; i < count; i++, start++)
568  CPU_SET(start, &mask);
569  child->cg_parent = parent;
570  child->cg_child = NULL;
571  child->cg_children = 0;
572  child->cg_level = share;
573  child->cg_count = count;
574  child->cg_flags = flags;
575  child->cg_mask = mask;
576  parent->cg_children++;
577  for (; parent != NULL; parent = parent->cg_parent) {
578  if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask))
579  panic("Duplicate children in %p. mask (%s) child (%s)",
580  parent,
581  cpusetobj_strprint(cpusetbuf, &parent->cg_mask),
582  cpusetobj_strprint(cpusetbuf2, &child->cg_mask));
583  CPU_OR(&parent->cg_mask, &child->cg_mask);
584  parent->cg_count += child->cg_count;
585  }
586 
587  return (start);
588 }
589 
590 struct cpu_group *
591 smp_topo_1level(int share, int count, int flags)
592 {
593  struct cpu_group *child;
594  struct cpu_group *top;
595  int packages;
596  int cpu;
597  int i;
598 
599  cpu = 0;
600  top = &group[0];
601  packages = mp_ncpus / count;
602  top->cg_child = child = &group[1];
603  top->cg_level = CG_SHARE_NONE;
604  for (i = 0; i < packages; i++, child++)
605  cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
606  return (top);
607 }
608 
609 struct cpu_group *
610 smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
611  int l1flags)
612 {
613  struct cpu_group *top;
614  struct cpu_group *l1g;
615  struct cpu_group *l2g;
616  int cpu;
617  int i;
618  int j;
619 
620  cpu = 0;
621  top = &group[0];
622  l2g = &group[1];
623  top->cg_child = l2g;
624  top->cg_level = CG_SHARE_NONE;
625  top->cg_children = mp_ncpus / (l2count * l1count);
626  l1g = l2g + top->cg_children;
627  for (i = 0; i < top->cg_children; i++, l2g++) {
628  l2g->cg_parent = top;
629  l2g->cg_child = l1g;
630  l2g->cg_level = l2share;
631  for (j = 0; j < l2count; j++, l1g++)
632  cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
633  l1flags, cpu);
634  }
635  return (top);
636 }
637 
638 
639 struct cpu_group *
640 smp_topo_find(struct cpu_group *top, int cpu)
641 {
642  struct cpu_group *cg;
643  cpuset_t mask;
644  int children;
645  int i;
646 
647  CPU_SETOF(cpu, &mask);
648  cg = top;
649  for (;;) {
650  if (!CPU_OVERLAP(&cg->cg_mask, &mask))
651  return (NULL);
652  if (cg->cg_children == 0)
653  return (cg);
654  children = cg->cg_children;
655  for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
656  if (CPU_OVERLAP(&cg->cg_mask, &mask))
657  break;
658  }
659  return (NULL);
660 }
661 #else /* !SMP */
662 
663 void
664 smp_rendezvous_cpus(cpuset_t map,
665  void (*setup_func)(void *),
666  void (*action_func)(void *),
667  void (*teardown_func)(void *),
668  void *arg)
669 {
670  /*
671  * In the !SMP case we just need to ensure the same initial conditions
672  * as the SMP case.
673  */
674  spinlock_enter();
675  if (setup_func != NULL)
676  setup_func(arg);
677  if (action_func != NULL)
678  action_func(arg);
679  if (teardown_func != NULL)
680  teardown_func(arg);
681  spinlock_exit();
682 }
683 
684 void
685 smp_rendezvous(void (*setup_func)(void *),
686  void (*action_func)(void *),
687  void (*teardown_func)(void *),
688  void *arg)
689 {
690 
691  /* Look comments in the smp_rendezvous_cpus() case. */
692  spinlock_enter();
693  if (setup_func != NULL)
694  setup_func(arg);
695  if (action_func != NULL)
696  action_func(arg);
697  if (teardown_func != NULL)
698  teardown_func(arg);
699  spinlock_exit();
700 }
701 
702 /*
703  * Provide dummy SMP support for UP kernels. Modules that need to use SMP
704  * APIs will still work using this dummy support.
705  */
706 static void
708 {
709  mp_ncpus = 1;
710  mp_maxid = PCPU_GET(cpuid);
711  CPU_SETOF(mp_maxid, &all_cpus);
712  KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
713 }
714 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
715  mp_setvariables_for_up, NULL);
716 #endif /* SMP */
717 
718 void
720 {
721 #ifdef SMP
722  KASSERT((!smp_started),("smp_no_rendevous called and smp is started"));
723 #endif
724 }
volatile int smp_started
Definition: subr_smp.c:67
int mp_maxcpus
Definition: subr_smp.c:65
int smp_topology
Definition: subr_smp.c:92
static SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD|CTLFLAG_CAPRD, NULL,"Kernel SMP")
cpuset_t all_cpus
Definition: subr_smp.c:61
void smp_no_rendevous_barrier(void *dummy)
Definition: subr_smp.c:719
static void mp_setvariables_for_up(void *dummy)
Definition: subr_smp.c:707
void *** start
Definition: linker_if.m:86
u_int mp_maxid
Definition: subr_smp.c:68
const char * panicstr
void panic(const char *fmt,...)
device_t parent
Definition: device_if.m:171
int * type
Definition: cpufreq_if.m:98
static int dummy
int mask
Definition: subr_acl_nfs4.c:67
int smp_active
Definition: subr_smp.c:79
void smp_rendezvous(void(*setup_func)(void *), void(*action_func)(void *), void(*teardown_func)(void *), void *arg)
Definition: subr_smp.c:685
int printf(const char *fmt,...)
Definition: subr_prf.c:367
int smp_cpus
Definition: subr_smp.c:88
void mtx_init(struct mtx *m, const char *name, const char *type, int opts)
Definition: kern_mutex.c:837
__FBSDID("$BSDSUniX$")
SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setvariables_for_up, NULL)
int mp_ncpus
Definition: subr_smp.c:63
void smp_rendezvous_cpus(cpuset_t map, void(*setup_func)(void *), void(*action_func)(void *), void(*teardown_func)(void *), void *arg)
Definition: subr_smp.c:664
TUNABLE_INT("kern.smp.disabled",&smp_disabled)
SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD,&mp_maxid, 0,"Max CPU ID.")
char * cpusetobj_strprint(char *buf, const cpuset_t *set)
Definition: kern_cpuset.c:648
int smp_disabled
Definition: subr_smp.c:83
int * count
Definition: cpufreq_if.m:63