FreeBSD kernel kern code
kern_tc.c
Go to the documentation of this file.
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  */
9 
10 #include <sys/cdefs.h>
11 __FBSDID("$BSDSUniX$");
12 
13 #include "opt_compat.h"
14 #include "opt_ntp.h"
15 
16 #include <sys/param.h>
17 #include <sys/kernel.h>
18 #include <sys/sysctl.h>
19 #include <sys/syslog.h>
20 #include <sys/systm.h>
21 #include <sys/timepps.h>
22 #include <sys/timetc.h>
23 #include <sys/timex.h>
24 #include <sys/vdso.h>
25 
26 /*
27  * A large step happens on boot. This constant detects such steps.
28  * It is relatively small so that ntp_update_second gets called enough
29  * in the typical 'missed a couple of seconds' case, but doesn't loop
30  * forever when the time step is large.
31  */
32 #define LARGE_STEP 200
33 
34 /*
35  * Implement a dummy timecounter which we can use until we get a real one
36  * in the air. This allows the console and other early stuff to use
37  * time services.
38  */
39 
40 static u_int
42 {
43  static u_int now;
44 
45  return (++now);
46 }
47 
48 static struct timecounter dummy_timecounter = {
49  dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
50 };
51 
52 struct timehands {
53  /* These fields must be initialized by the driver. */
55  int64_t th_adjustment;
56  uint64_t th_scale;
59  struct timeval th_microtime;
60  struct timespec th_nanotime;
61  /* Fields not to be copied in tc_windup start with th_generation. */
62  volatile u_int th_generation;
63  struct timehands *th_next;
64 };
65 
66 static struct timehands th0;
67 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
68 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
69 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
70 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
71 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
72 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
73 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
74 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
75 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
76 static struct timehands th0 = {
78  0,
79  (uint64_t)-1 / 1000000,
80  0,
81  {1, 0},
82  {0, 0},
83  {0, 0},
84  1,
85  &th1
86 };
87 
88 static struct timehands *volatile timehands = &th0;
91 
93 
94 volatile time_t time_second = 1;
95 volatile time_t time_uptime = 1;
96 
98 struct timeval boottime;
99 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
100 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
101  NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
102 
103 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
104 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
105 
106 static int timestepwarnings;
107 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
108  &timestepwarnings, 0, "Log time steps");
109 
110 static void tc_windup(void);
111 static void cpu_tick_calibrate(int);
112 
113 void dtrace_getnanotime(struct timespec *tsp);
114 
115 static int
116 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
117 {
118 #ifdef SCTL_MASK32
119  int tv[2];
120 
121  if (req->flags & SCTL_MASK32) {
122  tv[0] = boottime.tv_sec;
123  tv[1] = boottime.tv_usec;
124  return SYSCTL_OUT(req, tv, sizeof(tv));
125  } else
126 #endif
127  return SYSCTL_OUT(req, &boottime, sizeof(boottime));
128 }
129 
130 static int
131 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
132 {
133  u_int ncount;
134  struct timecounter *tc = arg1;
135 
136  ncount = tc->tc_get_timecount(tc);
137  return sysctl_handle_int(oidp, &ncount, 0, req);
138 }
139 
140 static int
141 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
142 {
143  uint64_t freq;
144  struct timecounter *tc = arg1;
145 
146  freq = tc->tc_frequency;
147  return sysctl_handle_64(oidp, &freq, 0, req);
148 }
149 
150 /*
151  * Return the difference between the timehands' counter value now and what
152  * was when we copied it to the timehands' offset_count.
153  */
154 static __inline u_int
155 tc_delta(struct timehands *th)
156 {
157  struct timecounter *tc;
158 
159  tc = th->th_counter;
160  return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
161  tc->tc_counter_mask);
162 }
163 
164 /*
165  * Functions for reading the time. We have to loop until we are sure that
166  * the timehands that we operated on was not updated under our feet. See
167  * the comment in <sys/time.h> for a description of these 12 functions.
168  */
169 
170 void
171 binuptime(struct bintime *bt)
172 {
173  struct timehands *th;
174  u_int gen;
175 
176  do {
177  th = timehands;
178  gen = th->th_generation;
179  *bt = th->th_offset;
180  bintime_addx(bt, th->th_scale * tc_delta(th));
181  } while (gen == 0 || gen != th->th_generation);
182 }
183 
184 void
185 nanouptime(struct timespec *tsp)
186 {
187  struct bintime bt;
188 
189  binuptime(&bt);
190  bintime2timespec(&bt, tsp);
191 }
192 
193 void
194 microuptime(struct timeval *tvp)
195 {
196  struct bintime bt;
197 
198  binuptime(&bt);
199  bintime2timeval(&bt, tvp);
200 }
201 
202 void
203 bintime(struct bintime *bt)
204 {
205 
206  binuptime(bt);
207  bintime_add(bt, &boottimebin);
208 }
209 
210 void
211 nanotime(struct timespec *tsp)
212 {
213  struct bintime bt;
214 
215  bintime(&bt);
216  bintime2timespec(&bt, tsp);
217 }
218 
219 void
220 microtime(struct timeval *tvp)
221 {
222  struct bintime bt;
223 
224  bintime(&bt);
225  bintime2timeval(&bt, tvp);
226 }
227 
228 void
230 {
231  struct timehands *th;
232  u_int gen;
233 
234  do {
235  th = timehands;
236  gen = th->th_generation;
237  *bt = th->th_offset;
238  } while (gen == 0 || gen != th->th_generation);
239 }
240 
241 void
242 getnanouptime(struct timespec *tsp)
243 {
244  struct timehands *th;
245  u_int gen;
246 
247  do {
248  th = timehands;
249  gen = th->th_generation;
250  bintime2timespec(&th->th_offset, tsp);
251  } while (gen == 0 || gen != th->th_generation);
252 }
253 
254 void
255 getmicrouptime(struct timeval *tvp)
256 {
257  struct timehands *th;
258  u_int gen;
259 
260  do {
261  th = timehands;
262  gen = th->th_generation;
263  bintime2timeval(&th->th_offset, tvp);
264  } while (gen == 0 || gen != th->th_generation);
265 }
266 
267 void
268 getbintime(struct bintime *bt)
269 {
270  struct timehands *th;
271  u_int gen;
272 
273  do {
274  th = timehands;
275  gen = th->th_generation;
276  *bt = th->th_offset;
277  } while (gen == 0 || gen != th->th_generation);
278  bintime_add(bt, &boottimebin);
279 }
280 
281 void
282 getnanotime(struct timespec *tsp)
283 {
284  struct timehands *th;
285  u_int gen;
286 
287  do {
288  th = timehands;
289  gen = th->th_generation;
290  *tsp = th->th_nanotime;
291  } while (gen == 0 || gen != th->th_generation);
292 }
293 
294 void
295 getmicrotime(struct timeval *tvp)
296 {
297  struct timehands *th;
298  u_int gen;
299 
300  do {
301  th = timehands;
302  gen = th->th_generation;
303  *tvp = th->th_microtime;
304  } while (gen == 0 || gen != th->th_generation);
305 }
306 
307 /*
308  * This is a clone of getnanotime and used for walltimestamps.
309  * The dtrace_ prefix prevents fbt from creating probes for
310  * it so walltimestamp can be safely used in all fbt probes.
311  */
312 void
313 dtrace_getnanotime(struct timespec *tsp)
314 {
315  struct timehands *th;
316  u_int gen;
317 
318  do {
319  th = timehands;
320  gen = th->th_generation;
321  *tsp = th->th_nanotime;
322  } while (gen == 0 || gen != th->th_generation);
323 }
324 
325 /*
326  * Initialize a new timecounter and possibly use it.
327  */
328 void
329 tc_init(struct timecounter *tc)
330 {
331  u_int u;
332  struct sysctl_oid *tc_root;
333 
334  u = tc->tc_frequency / tc->tc_counter_mask;
335  /* XXX: We need some margin here, 10% is a guess */
336  u *= 11;
337  u /= 10;
338  if (u > hz && tc->tc_quality >= 0) {
339  tc->tc_quality = -2000;
340  if (bootverbose) {
341  printf("Timecounter \"%s\" frequency %ju Hz",
342  tc->tc_name, (uintmax_t)tc->tc_frequency);
343  printf(" -- Insufficient hz, needs at least %u\n", u);
344  }
345  } else if (tc->tc_quality >= 0 || bootverbose) {
346  printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
347  tc->tc_name, (uintmax_t)tc->tc_frequency,
348  tc->tc_quality);
349  }
350 
351  tc->tc_next = timecounters;
352  timecounters = tc;
353  /*
354  * Set up sysctl tree for this counter.
355  */
356  tc_root = SYSCTL_ADD_NODE(NULL,
357  SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
358  CTLFLAG_RW, 0, "timecounter description");
359  SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
360  "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
361  "mask for implemented bits");
362  SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
363  "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
364  sysctl_kern_timecounter_get, "IU", "current timecounter value");
365  SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
366  "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
367  sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
368  SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
369  "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
370  "goodness of time counter");
371  /*
372  * Never automatically use a timecounter with negative quality.
373  * Even though we run on the dummy counter, switching here may be
374  * worse since this timecounter may not be monotonous.
375  */
376  if (tc->tc_quality < 0)
377  return;
378  if (tc->tc_quality < timecounter->tc_quality)
379  return;
380  if (tc->tc_quality == timecounter->tc_quality &&
381  tc->tc_frequency < timecounter->tc_frequency)
382  return;
383  (void)tc->tc_get_timecount(tc);
384  (void)tc->tc_get_timecount(tc);
385  timecounter = tc;
386 }
387 
388 /* Report the frequency of the current timecounter. */
389 uint64_t
391 {
392 
393  return (timehands->th_counter->tc_frequency);
394 }
395 
396 /*
397  * Step our concept of UTC. This is done by modifying our estimate of
398  * when we booted.
399  * XXX: not locked.
400  */
401 void
402 tc_setclock(struct timespec *ts)
403 {
404  struct timespec tbef, taft;
405  struct bintime bt, bt2;
406 
408  nanotime(&tbef);
409  timespec2bintime(ts, &bt);
410  binuptime(&bt2);
411  bintime_sub(&bt, &bt2);
412  bintime_add(&bt2, &boottimebin);
413  boottimebin = bt;
414  bintime2timeval(&bt, &boottime);
415 
416  /* XXX fiddle all the little crinkly bits around the fiords... */
417  tc_windup();
418  nanotime(&taft);
419  if (timestepwarnings) {
420  log(LOG_INFO,
421  "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
422  (intmax_t)tbef.tv_sec, tbef.tv_nsec,
423  (intmax_t)taft.tv_sec, taft.tv_nsec,
424  (intmax_t)ts->tv_sec, ts->tv_nsec);
425  }
427 }
428 
429 /*
430  * Initialize the next struct timehands in the ring and make
431  * it the active timehands. Along the way we might switch to a different
432  * timecounter and/or do seconds processing in NTP. Slightly magic.
433  */
434 static void
436 {
437  struct bintime bt;
438  struct timehands *th, *tho;
439  uint64_t scale;
440  u_int delta, ncount, ogen;
441  int i;
442  time_t t;
443 
444  /*
445  * Make the next timehands a copy of the current one, but do not
446  * overwrite the generation or next pointer. While we update
447  * the contents, the generation must be zero.
448  */
449  tho = timehands;
450  th = tho->th_next;
451  ogen = th->th_generation;
452  th->th_generation = 0;
453  bcopy(tho, th, offsetof(struct timehands, th_generation));
454 
455  /*
456  * Capture a timecounter delta on the current timecounter and if
457  * changing timecounters, a counter value from the new timecounter.
458  * Update the offset fields accordingly.
459  */
460  delta = tc_delta(th);
461  if (th->th_counter != timecounter)
462  ncount = timecounter->tc_get_timecount(timecounter);
463  else
464  ncount = 0;
465  th->th_offset_count += delta;
466  th->th_offset_count &= th->th_counter->tc_counter_mask;
467  while (delta > th->th_counter->tc_frequency) {
468  /* Eat complete unadjusted seconds. */
469  delta -= th->th_counter->tc_frequency;
470  th->th_offset.sec++;
471  }
472  if ((delta > th->th_counter->tc_frequency / 2) &&
473  (th->th_scale * delta < ((uint64_t)1 << 63))) {
474  /* The product th_scale * delta just barely overflows. */
475  th->th_offset.sec++;
476  }
477  bintime_addx(&th->th_offset, th->th_scale * delta);
478 
479  /*
480  * Hardware latching timecounters may not generate interrupts on
481  * PPS events, so instead we poll them. There is a finite risk that
482  * the hardware might capture a count which is later than the one we
483  * got above, and therefore possibly in the next NTP second which might
484  * have a different rate than the current NTP second. It doesn't
485  * matter in practice.
486  */
487  if (tho->th_counter->tc_poll_pps)
488  tho->th_counter->tc_poll_pps(tho->th_counter);
489 
490  /*
491  * Deal with NTP second processing. The for loop normally
492  * iterates at most once, but in extreme situations it might
493  * keep NTP sane if timeouts are not run for several seconds.
494  * At boot, the time step can be large when the TOD hardware
495  * has been read, so on really large steps, we call
496  * ntp_update_second only twice. We need to call it twice in
497  * case we missed a leap second.
498  */
499  bt = th->th_offset;
500  bintime_add(&bt, &boottimebin);
501  i = bt.sec - tho->th_microtime.tv_sec;
502  if (i > LARGE_STEP)
503  i = 2;
504  for (; i > 0; i--) {
505  t = bt.sec;
506  ntp_update_second(&th->th_adjustment, &bt.sec);
507  if (bt.sec != t)
508  boottimebin.sec += bt.sec - t;
509  }
510  /* Update the UTC timestamps used by the get*() functions. */
511  /* XXX shouldn't do this here. Should force non-`get' versions. */
512  bintime2timeval(&bt, &th->th_microtime);
513  bintime2timespec(&bt, &th->th_nanotime);
514 
515  /* Now is a good time to change timecounters. */
516  if (th->th_counter != timecounter) {
517 #ifndef __arm__
518  if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
520  if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
522 #endif
523  th->th_counter = timecounter;
524  th->th_offset_count = ncount;
525  tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
526  (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
527  }
528 
529  /*-
530  * Recalculate the scaling factor. We want the number of 1/2^64
531  * fractions of a second per period of the hardware counter, taking
532  * into account the th_adjustment factor which the NTP PLL/adjtime(2)
533  * processing provides us with.
534  *
535  * The th_adjustment is nanoseconds per second with 32 bit binary
536  * fraction and we want 64 bit binary fraction of second:
537  *
538  * x = a * 2^32 / 10^9 = a * 4.294967296
539  *
540  * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
541  * we can only multiply by about 850 without overflowing, that
542  * leaves no suitably precise fractions for multiply before divide.
543  *
544  * Divide before multiply with a fraction of 2199/512 results in a
545  * systematic undercompensation of 10PPM of th_adjustment. On a
546  * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
547  *
548  * We happily sacrifice the lowest of the 64 bits of our result
549  * to the goddess of code clarity.
550  *
551  */
552  scale = (uint64_t)1 << 63;
553  scale += (th->th_adjustment / 1024) * 2199;
554  scale /= th->th_counter->tc_frequency;
555  th->th_scale = scale * 2;
556 
557  /*
558  * Now that the struct timehands is again consistent, set the new
559  * generation number, making sure to not make it zero.
560  */
561  if (++ogen == 0)
562  ogen = 1;
563  th->th_generation = ogen;
564 
565  /* Go live with the new struct timehands. */
566  time_second = th->th_microtime.tv_sec;
567  time_uptime = th->th_offset.sec;
568  timehands = th;
570 }
571 
572 /* Report or change the active timecounter hardware. */
573 static int
575 {
576  char newname[32];
577  struct timecounter *newtc, *tc;
578  int error;
579 
580  tc = timecounter;
581  strlcpy(newname, tc->tc_name, sizeof(newname));
582 
583  error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
584  if (error != 0 || req->newptr == NULL ||
585  strcmp(newname, tc->tc_name) == 0)
586  return (error);
587  for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
588  if (strcmp(newname, newtc->tc_name) != 0)
589  continue;
590 
591  /* Warm up new timecounter. */
592  (void)newtc->tc_get_timecount(newtc);
593  (void)newtc->tc_get_timecount(newtc);
594 
595  timecounter = newtc;
597  return (0);
598  }
599  return (EINVAL);
600 }
601 
602 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
604  "Timecounter hardware selected");
605 
606 
607 /* Report or change the active timecounter hardware. */
608 static int
609 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
610 {
611  char buf[32], *spc;
612  struct timecounter *tc;
613  int error;
614 
615  spc = "";
616  error = 0;
617  for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
618  sprintf(buf, "%s%s(%d)",
619  spc, tc->tc_name, tc->tc_quality);
620  error = SYSCTL_OUT(req, buf, strlen(buf));
621  spc = " ";
622  }
623  return (error);
624 }
625 
626 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
627  0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
628 
629 /*
630  * RFC 2783 PPS-API implementation.
631  */
632 
633 int
634 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
635 {
636  pps_params_t *app;
637  struct pps_fetch_args *fapi;
638 #ifdef PPS_SYNC
639  struct pps_kcbind_args *kapi;
640 #endif
641 
642  KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
643  switch (cmd) {
644  case PPS_IOC_CREATE:
645  return (0);
646  case PPS_IOC_DESTROY:
647  return (0);
648  case PPS_IOC_SETPARAMS:
649  app = (pps_params_t *)data;
650  if (app->mode & ~pps->ppscap)
651  return (EINVAL);
652  pps->ppsparam = *app;
653  return (0);
654  case PPS_IOC_GETPARAMS:
655  app = (pps_params_t *)data;
656  *app = pps->ppsparam;
657  app->api_version = PPS_API_VERS_1;
658  return (0);
659  case PPS_IOC_GETCAP:
660  *(int*)data = pps->ppscap;
661  return (0);
662  case PPS_IOC_FETCH:
663  fapi = (struct pps_fetch_args *)data;
664  if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
665  return (EINVAL);
666  if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
667  return (EOPNOTSUPP);
668  pps->ppsinfo.current_mode = pps->ppsparam.mode;
669  fapi->pps_info_buf = pps->ppsinfo;
670  return (0);
671  case PPS_IOC_KCBIND:
672 #ifdef PPS_SYNC
673  kapi = (struct pps_kcbind_args *)data;
674  /* XXX Only root should be able to do this */
675  if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
676  return (EINVAL);
677  if (kapi->kernel_consumer != PPS_KC_HARDPPS)
678  return (EINVAL);
679  if (kapi->edge & ~pps->ppscap)
680  return (EINVAL);
681  pps->kcmode = kapi->edge;
682  return (0);
683 #else
684  return (EOPNOTSUPP);
685 #endif
686  default:
687  return (ENOIOCTL);
688  }
689 }
690 
691 void
692 pps_init(struct pps_state *pps)
693 {
694  pps->ppscap |= PPS_TSFMT_TSPEC;
695  if (pps->ppscap & PPS_CAPTUREASSERT)
696  pps->ppscap |= PPS_OFFSETASSERT;
697  if (pps->ppscap & PPS_CAPTURECLEAR)
698  pps->ppscap |= PPS_OFFSETCLEAR;
699 }
700 
701 void
702 pps_capture(struct pps_state *pps)
703 {
704  struct timehands *th;
705 
706  KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
707  th = timehands;
708  pps->capgen = th->th_generation;
709  pps->capth = th;
710  pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
711  if (pps->capgen != th->th_generation)
712  pps->capgen = 0;
713 }
714 
715 void
716 pps_event(struct pps_state *pps, int event)
717 {
718  struct bintime bt;
719  struct timespec ts, *tsp, *osp;
720  u_int tcount, *pcount;
721  int foff, fhard;
722  pps_seq_t *pseq;
723 
724  KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
725  /* If the timecounter was wound up underneath us, bail out. */
726  if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
727  return;
728 
729  /* Things would be easier with arrays. */
730  if (event == PPS_CAPTUREASSERT) {
731  tsp = &pps->ppsinfo.assert_timestamp;
732  osp = &pps->ppsparam.assert_offset;
733  foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
734  fhard = pps->kcmode & PPS_CAPTUREASSERT;
735  pcount = &pps->ppscount[0];
736  pseq = &pps->ppsinfo.assert_sequence;
737  } else {
738  tsp = &pps->ppsinfo.clear_timestamp;
739  osp = &pps->ppsparam.clear_offset;
740  foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
741  fhard = pps->kcmode & PPS_CAPTURECLEAR;
742  pcount = &pps->ppscount[1];
743  pseq = &pps->ppsinfo.clear_sequence;
744  }
745 
746  /*
747  * If the timecounter changed, we cannot compare the count values, so
748  * we have to drop the rest of the PPS-stuff until the next event.
749  */
750  if (pps->ppstc != pps->capth->th_counter) {
751  pps->ppstc = pps->capth->th_counter;
752  *pcount = pps->capcount;
753  pps->ppscount[2] = pps->capcount;
754  return;
755  }
756 
757  /* Convert the count to a timespec. */
758  tcount = pps->capcount - pps->capth->th_offset_count;
759  tcount &= pps->capth->th_counter->tc_counter_mask;
760  bt = pps->capth->th_offset;
761  bintime_addx(&bt, pps->capth->th_scale * tcount);
762  bintime_add(&bt, &boottimebin);
763  bintime2timespec(&bt, &ts);
764 
765  /* If the timecounter was wound up underneath us, bail out. */
766  if (pps->capgen != pps->capth->th_generation)
767  return;
768 
769  *pcount = pps->capcount;
770  (*pseq)++;
771  *tsp = ts;
772 
773  if (foff) {
774  timespecadd(tsp, osp);
775  if (tsp->tv_nsec < 0) {
776  tsp->tv_nsec += 1000000000;
777  tsp->tv_sec -= 1;
778  }
779  }
780 #ifdef PPS_SYNC
781  if (fhard) {
782  uint64_t scale;
783 
784  /*
785  * Feed the NTP PLL/FLL.
786  * The FLL wants to know how many (hardware) nanoseconds
787  * elapsed since the previous event.
788  */
789  tcount = pps->capcount - pps->ppscount[2];
790  pps->ppscount[2] = pps->capcount;
791  tcount &= pps->capth->th_counter->tc_counter_mask;
792  scale = (uint64_t)1 << 63;
793  scale /= pps->capth->th_counter->tc_frequency;
794  scale *= 2;
795  bt.sec = 0;
796  bt.frac = 0;
797  bintime_addx(&bt, scale * tcount);
798  bintime2timespec(&bt, &ts);
799  hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
800  }
801 #endif
802 }
803 
804 /*
805  * Timecounters need to be updated every so often to prevent the hardware
806  * counter from overflowing. Updating also recalculates the cached values
807  * used by the get*() family of functions, so their precision depends on
808  * the update frequency.
809  */
810 
811 static int tc_tick;
812 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
813  "Approximate number of hardclock ticks in a millisecond");
814 
815 void
816 tc_ticktock(int cnt)
817 {
818  static int count;
819 
820  count += cnt;
821  if (count < tc_tick)
822  return;
823  count = 0;
824  tc_windup();
825 }
826 
827 static void
829 {
830  u_int p;
831 
832  /*
833  * Set the initial timeout to
834  * max(1, <approx. number of hardclock ticks in a millisecond>).
835  * People should probably not use the sysctl to set the timeout
836  * to smaller than its inital value, since that value is the
837  * smallest reasonable one. If they want better timestamps they
838  * should use the non-"get"* functions.
839  */
840  if (hz > 1000)
841  tc_tick = (hz + 500) / 1000;
842  else
843  tc_tick = 1;
844  p = (tc_tick * 1000000) / hz;
845  printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
846 
847  /* warm up new timecounter (again) and get rolling. */
848  (void)timecounter->tc_get_timecount(timecounter);
849  (void)timecounter->tc_get_timecount(timecounter);
850  tc_windup();
851 }
852 
853 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
854 
855 /* Cpu tick handling -------------------------------------------------*/
856 
857 static int cpu_tick_variable;
858 static uint64_t cpu_tick_frequency;
859 
860 static uint64_t
862 {
863  static uint64_t base;
864  static unsigned last;
865  unsigned u;
866  struct timecounter *tc;
867 
868  tc = timehands->th_counter;
869  u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
870  if (u < last)
871  base += (uint64_t)tc->tc_counter_mask + 1;
872  last = u;
873  return (u + base);
874 }
875 
876 void
878 {
879  static time_t last_calib;
880 
881  if (time_uptime != last_calib && !(time_uptime & 0xf)) {
883  last_calib = time_uptime;
884  }
885 }
886 
887 /*
888  * This function gets called every 16 seconds on only one designated
889  * CPU in the system from hardclock() via cpu_tick_calibration()().
890  *
891  * Whenever the real time clock is stepped we get called with reset=1
892  * to make sure we handle suspend/resume and similar events correctly.
893  */
894 
895 static void
897 {
898  static uint64_t c_last;
899  uint64_t c_this, c_delta;
900  static struct bintime t_last;
901  struct bintime t_this, t_delta;
902  uint32_t divi;
903 
904  if (reset) {
905  /* The clock was stepped, abort & reset */
906  t_last.sec = 0;
907  return;
908  }
909 
910  /* we don't calibrate fixed rate cputicks */
911  if (!cpu_tick_variable)
912  return;
913 
914  getbinuptime(&t_this);
915  c_this = cpu_ticks();
916  if (t_last.sec != 0) {
917  c_delta = c_this - c_last;
918  t_delta = t_this;
919  bintime_sub(&t_delta, &t_last);
920  /*
921  * Headroom:
922  * 2^(64-20) / 16[s] =
923  * 2^(44) / 16[s] =
924  * 17.592.186.044.416 / 16 =
925  * 1.099.511.627.776 [Hz]
926  */
927  divi = t_delta.sec << 20;
928  divi |= t_delta.frac >> (64 - 20);
929  c_delta <<= 20;
930  c_delta /= divi;
931  if (c_delta > cpu_tick_frequency) {
932  if (0 && bootverbose)
933  printf("cpu_tick increased to %ju Hz\n",
934  c_delta);
935  cpu_tick_frequency = c_delta;
936  }
937  }
938  c_last = c_this;
939  t_last = t_this;
940 }
941 
942 void
943 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
944 {
945 
946  if (func == NULL) {
948  } else {
949  cpu_tick_frequency = freq;
950  cpu_tick_variable = var;
951  cpu_ticks = func;
952  }
953 }
954 
955 uint64_t
957 {
958 
959  if (cpu_ticks == tc_cpu_ticks)
960  return (tc_getfrequency());
961  return (cpu_tick_frequency);
962 }
963 
964 /*
965  * We need to be slightly careful converting cputicks to microseconds.
966  * There is plenty of margin in 64 bits of microseconds (half a million
967  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
968  * before divide conversion (to retain precision) we find that the
969  * margin shrinks to 1.5 hours (one millionth of 146y).
970  * With a three prong approach we never lose significant bits, no
971  * matter what the cputick rate and length of timeinterval is.
972  */
973 
974 uint64_t
976 {
977 
978  if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */
979  return (tick / (cpu_tickrate() / 1000000LL));
980  else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */
981  return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
982  else
983  return ((tick * 1000000LL) / cpu_tickrate());
984 }
985 
986 cpu_tick_f *cpu_ticks = tc_cpu_ticks;
987 
988 static int vdso_th_enable = 1;
989 static int
990 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
991 {
992  int old_vdso_th_enable, error;
993 
994  old_vdso_th_enable = vdso_th_enable;
995  error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
996  if (error != 0)
997  return (error);
998  vdso_th_enable = old_vdso_th_enable;
1000  return (0);
1001 }
1002 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
1003  CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1004  NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
1005 
1006 uint32_t
1007 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
1008 {
1009  struct timehands *th;
1010  uint32_t enabled;
1011 
1012  th = timehands;
1013  vdso_th->th_algo = VDSO_TH_ALGO_1;
1014  vdso_th->th_scale = th->th_scale;
1015  vdso_th->th_offset_count = th->th_offset_count;
1016  vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
1017  vdso_th->th_offset = th->th_offset;
1018  vdso_th->th_boottime = boottimebin;
1019  enabled = cpu_fill_vdso_timehands(vdso_th);
1020  if (!vdso_th_enable)
1021  enabled = 0;
1022  return (enabled);
1023 }
1024 
1025 #ifdef COMPAT_32BIT
1026 uint32_t
1027 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
1028 {
1029  struct timehands *th;
1030  uint32_t enabled;
1031 
1032  th = timehands;
1033  vdso_th32->th_algo = VDSO_TH_ALGO_1;
1034  *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
1035  vdso_th32->th_offset_count = th->th_offset_count;
1036  vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
1037  vdso_th32->th_offset.sec = th->th_offset.sec;
1038  *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
1039  vdso_th32->th_boottime.sec = boottimebin.sec;
1040  *(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac;
1041  enabled = cpu_fill_vdso_timehands32(vdso_th32);
1042  if (!vdso_th_enable)
1043  enabled = 0;
1044  return (enabled);
1045 }
1046 #endif
void set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
Definition: kern_tc.c:943
static struct timehands th3
Definition: kern_tc.c:73
static struct timehands th5
Definition: kern_tc.c:71
volatile time_t time_second
Definition: kern_tc.c:94
struct timehands * th_next
Definition: kern_tc.c:63
uint32_t cpu_fill_vdso_timehands(struct vdso_timehands *vdso_th)
void tc_ticktock(int cnt)
Definition: kern_tc.c:816
struct buf * buf
Definition: vfs_bio.c:97
static void tc_windup(void)
Definition: kern_tc.c:435
struct timespec * ts
Definition: clock_if.m:39
#define LARGE_STEP
Definition: kern_tc.c:32
int bootverbose
Definition: init_main.c:107
int sprintf(char *buf, const char *cfmt,...)
Definition: subr_prf.c:480
void tc_init(struct timecounter *tc)
Definition: kern_tc.c:329
static int sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
Definition: kern_tc.c:131
int pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
Definition: kern_tc.c:634
static struct timehands th4
Definition: kern_tc.c:72
void pps_init(struct pps_state *pps)
Definition: kern_tc.c:692
static struct timecounter dummy_timecounter
Definition: kern_tc.c:48
static void cpu_tick_calibrate(int)
Definition: kern_tc.c:896
int sysctl_handle_string(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:1121
void getnanouptime(struct timespec *tsp)
Definition: kern_tc.c:242
static int sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
Definition: kern_tc.c:574
static int sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
Definition: kern_tc.c:990
void getmicrouptime(struct timeval *tvp)
Definition: kern_tc.c:255
struct bintime boottimebin
Definition: kern_tc.c:97
static int tc_tick
Definition: kern_tc.c:811
static int cpu_tick_variable
Definition: kern_tc.c:857
void ntp_update_second(int64_t *adjustment, time_t *newsec)
Definition: kern_ntptime.c:480
volatile u_int th_generation
Definition: kern_tc.c:62
static int dummy
struct timecounter * timecounter
Definition: kern_tc.c:89
uint64_t cputick2usec(uint64_t tick)
Definition: kern_tc.c:975
static void inittimecounter(void *dummy)
Definition: kern_tc.c:828
void tc_setclock(struct timespec *ts)
Definition: kern_tc.c:402
SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,&timestepwarnings, 0,"Log time steps")
uint64_t th_scale
Definition: kern_tc.c:56
static struct timecounter * timecounters
Definition: kern_tc.c:90
struct timeval boottime
Definition: kern_tc.c:98
static struct timehands th7
Definition: kern_tc.c:69
int sysctl_handle_int(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:986
void getmicrotime(struct timeval *tvp)
Definition: kern_tc.c:295
static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
Definition: kern_tc.c:116
void nanotime(struct timespec *tsp)
Definition: kern_tc.c:211
int sysctl_handle_64(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:1089
static int vdso_th_enable
Definition: kern_tc.c:988
static u_int dummy_get_timecount(struct timecounter *tc)
Definition: kern_tc.c:41
void log(int level, const char *fmt,...)
Definition: subr_prf.c:289
int cpu_disable_c2_sleep
SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
static __inline u_int tc_delta(struct timehands *th)
Definition: kern_tc.c:155
void getnanotime(struct timespec *tsp)
Definition: kern_tc.c:282
void pps_event(struct pps_state *pps, int event)
Definition: kern_tc.c:716
__FBSDID("$BSDSUniX$")
struct timecounter * th_counter
Definition: kern_tc.c:54
struct timeval th_microtime
Definition: kern_tc.c:59
int printf(const char *fmt,...)
Definition: subr_prf.c:367
static int timestepwarnings
Definition: kern_tc.c:106
int64_t th_adjustment
Definition: kern_tc.c:55
static int sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
Definition: kern_tc.c:609
static struct timehands th1
Definition: kern_tc.c:75
uint32_t tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
Definition: kern_tc.c:1007
void bintime(struct bintime *bt)
Definition: kern_tc.c:203
void dtrace_getnanotime(struct timespec *tsp)
Definition: kern_tc.c:313
void getbinuptime(struct bintime *bt)
Definition: kern_tc.c:229
SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD, NULL, 0, sysctl_kern_boottime,"S,timeval","System boottime")
void getbintime(struct bintime *bt)
Definition: kern_tc.c:268
uint64_t cpu_tickrate(void)
Definition: kern_tc.c:956
struct bintime th_offset
Definition: kern_tc.c:58
uint64_t tc_getfrequency(void)
Definition: kern_tc.c:390
volatile time_t time_uptime
Definition: kern_tc.c:95
void microuptime(struct timeval *tvp)
Definition: kern_tc.c:194
void binuptime(struct bintime *bt)
Definition: kern_tc.c:171
void timekeep_push_vdso(void)
void pps_capture(struct pps_state *pps)
Definition: kern_tc.c:702
void microtime(struct timeval *tvp)
Definition: kern_tc.c:220
static struct timehands *volatile timehands
Definition: kern_tc.c:88
int tc_min_ticktock_freq
Definition: kern_tc.c:92
u_int th_offset_count
Definition: kern_tc.c:57
void nanouptime(struct timespec *tsp)
Definition: kern_tc.c:185
static struct timehands th6
Definition: kern_tc.c:70
int tick
Definition: subr_param.c:85
static uint64_t tc_cpu_ticks(void)
Definition: kern_tc.c:861
static struct timehands th9
Definition: kern_tc.c:67
static struct timehands th2
Definition: kern_tc.c:74
void cpu_tick_calibration(void)
Definition: kern_tc.c:877
static struct timehands th0
Definition: kern_tc.c:66
SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0,"")
cpu_tick_f * cpu_ticks
Definition: kern_tc.c:986
static uint64_t cpu_tick_frequency
Definition: kern_tc.c:858
static int sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
Definition: kern_tc.c:141
int hz
Definition: subr_param.c:84
int * count
Definition: cpufreq_if.m:63
static struct timehands th8
Definition: kern_tc.c:68
struct timespec th_nanotime
Definition: kern_tc.c:60