FreeBSD kernel kern code
kern_lockf.c
Go to the documentation of this file.
1 /*-
2  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3  * Authors: Doug Rabson <dfr@rabson.org>
4  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  * notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  * notice, this list of conditions and the following disclaimer in the
13  * documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 /*-
28  * Copyright (c) 1982, 1986, 1989, 1993
29  * The Regents of the University of California. All rights reserved.
30  *
31  * This code is derived from software contributed to Berkeley by
32  * Scooter Morris at Genentech Inc.
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  * notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  * notice, this list of conditions and the following disclaimer in the
41  * documentation and/or other materials provided with the distribution.
42  * 4. Neither the name of the University nor the names of its contributors
43  * may be used to endorse or promote products derived from this software
44  * without specific prior written permission.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  * @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94
59  */
60 
61 #include <sys/cdefs.h>
62 __FBSDID("$BSDSUniX$");
63 
64 #include "opt_debug_lockf.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/hash.h>
69 #include <sys/kernel.h>
70 #include <sys/limits.h>
71 #include <sys/lock.h>
72 #include <sys/mount.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/sx.h>
76 #include <sys/unistd.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/fcntl.h>
80 #include <sys/lockf.h>
81 #include <sys/taskqueue.h>
82 
83 #ifdef LOCKF_DEBUG
84 #include <sys/sysctl.h>
85 
86 #include <ufs/ufs/quota.h>
87 #include <ufs/ufs/inode.h>
88 
89 static int lockf_debug = 0; /* control debug output */
90 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
91 #endif
92 
93 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
94 
95 struct owner_edge;
96 struct owner_vertex;
97 struct owner_vertex_list;
98 struct owner_graph;
99 
100 #define NOLOCKF (struct lockf_entry *)0
101 #define SELF 0x1
102 #define OTHERS 0x2
103 static void lf_init(void *);
104 static int lf_hash_owner(caddr_t, struct flock *, int);
105 static int lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
106  int);
107 static struct lockf_entry *
108  lf_alloc_lock(struct lock_owner *);
109 static int lf_free_lock(struct lockf_entry *);
110 static int lf_clearlock(struct lockf *, struct lockf_entry *);
111 static int lf_overlaps(struct lockf_entry *, struct lockf_entry *);
112 static int lf_blocks(struct lockf_entry *, struct lockf_entry *);
113 static void lf_free_edge(struct lockf_edge *);
114 static struct lockf_edge *
115  lf_alloc_edge(void);
116 static void lf_alloc_vertex(struct lockf_entry *);
117 static int lf_add_edge(struct lockf_entry *, struct lockf_entry *);
118 static void lf_remove_edge(struct lockf_edge *);
119 static void lf_remove_outgoing(struct lockf_entry *);
120 static void lf_remove_incoming(struct lockf_entry *);
121 static int lf_add_outgoing(struct lockf *, struct lockf_entry *);
122 static int lf_add_incoming(struct lockf *, struct lockf_entry *);
123 static int lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
124  int);
125 static struct lockf_entry *
126  lf_getblock(struct lockf *, struct lockf_entry *);
127 static int lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
128 static void lf_insert_lock(struct lockf *, struct lockf_entry *);
129 static void lf_wakeup_lock(struct lockf *, struct lockf_entry *);
130 static void lf_update_dependancies(struct lockf *, struct lockf_entry *,
131  int all, struct lockf_entry_list *);
132 static void lf_set_start(struct lockf *, struct lockf_entry *, off_t,
133  struct lockf_entry_list*);
134 static void lf_set_end(struct lockf *, struct lockf_entry *, off_t,
135  struct lockf_entry_list*);
136 static int lf_setlock(struct lockf *, struct lockf_entry *,
137  struct vnode *, void **cookiep);
138 static int lf_cancel(struct lockf *, struct lockf_entry *, void *);
139 static void lf_split(struct lockf *, struct lockf_entry *,
140  struct lockf_entry *, struct lockf_entry_list *);
141 #ifdef LOCKF_DEBUG
142 static int graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
143  struct owner_vertex_list *path);
144 static void graph_check(struct owner_graph *g, int checkorder);
145 static void graph_print_vertices(struct owner_vertex_list *set);
146 #endif
147 static int graph_delta_forward(struct owner_graph *g,
148  struct owner_vertex *x, struct owner_vertex *y,
149  struct owner_vertex_list *delta);
150 static int graph_delta_backward(struct owner_graph *g,
151  struct owner_vertex *x, struct owner_vertex *y,
152  struct owner_vertex_list *delta);
153 static int graph_add_indices(int *indices, int n,
154  struct owner_vertex_list *set);
155 static int graph_assign_indices(struct owner_graph *g, int *indices,
156  int nextunused, struct owner_vertex_list *set);
157 static int graph_add_edge(struct owner_graph *g,
158  struct owner_vertex *x, struct owner_vertex *y);
159 static void graph_remove_edge(struct owner_graph *g,
160  struct owner_vertex *x, struct owner_vertex *y);
161 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
162  struct lock_owner *lo);
163 static void graph_free_vertex(struct owner_graph *g,
164  struct owner_vertex *v);
165 static struct owner_graph * graph_init(struct owner_graph *g);
166 #ifdef LOCKF_DEBUG
167 static void lf_print(char *, struct lockf_entry *);
168 static void lf_printlist(char *, struct lockf_entry *);
169 static void lf_print_owner(struct lock_owner *);
170 #endif
171 
172 /*
173  * This structure is used to keep track of both local and remote lock
174  * owners. The lf_owner field of the struct lockf_entry points back at
175  * the lock owner structure. Each possible lock owner (local proc for
176  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
177  * pair for remote locks) is represented by a unique instance of
178  * struct lock_owner.
179  *
180  * If a lock owner has a lock that blocks some other lock or a lock
181  * that is waiting for some other lock, it also has a vertex in the
182  * owner_graph below.
183  *
184  * Locks:
185  * (s) locked by state->ls_lock
186  * (S) locked by lf_lock_states_lock
187  * (l) locked by lf_lock_owners_lock
188  * (g) locked by lf_owner_graph_lock
189  * (c) const until freeing
190  */
191 #define LOCK_OWNER_HASH_SIZE 256
192 
193 struct lock_owner {
194  LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
195  int lo_refs; /* (l) Number of locks referring to this */
196  int lo_flags; /* (c) Flags passwd to lf_advlock */
197  caddr_t lo_id; /* (c) Id value passed to lf_advlock */
198  pid_t lo_pid; /* (c) Process Id of the lock owner */
199  int lo_sysid; /* (c) System Id of the lock owner */
200  struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
201 };
202 
203 LIST_HEAD(lock_owner_list, lock_owner);
204 
205 static struct sx lf_lock_states_lock;
206 static struct lockf_list lf_lock_states; /* (S) */
207 static struct sx lf_lock_owners_lock;
208 static struct lock_owner_list lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */
209 
210 /*
211  * Structures for deadlock detection.
212  *
213  * We have two types of directed graph, the first is the set of locks,
214  * both active and pending on a vnode. Within this graph, active locks
215  * are terminal nodes in the graph (i.e. have no out-going
216  * edges). Pending locks have out-going edges to each blocking active
217  * lock that prevents the lock from being granted and also to each
218  * older pending lock that would block them if it was active. The
219  * graph for each vnode is naturally acyclic; new edges are only ever
220  * added to or from new nodes (either new pending locks which only add
221  * out-going edges or new active locks which only add in-coming edges)
222  * therefore they cannot create loops in the lock graph.
223  *
224  * The second graph is a global graph of lock owners. Each lock owner
225  * is a vertex in that graph and an edge is added to the graph
226  * whenever an edge is added to a vnode graph, with end points
227  * corresponding to owner of the new pending lock and the owner of the
228  * lock upon which it waits. In order to prevent deadlock, we only add
229  * an edge to this graph if the new edge would not create a cycle.
230  *
231  * The lock owner graph is topologically sorted, i.e. if a node has
232  * any outgoing edges, then it has an order strictly less than any
233  * node to which it has an outgoing edge. We preserve this ordering
234  * (and detect cycles) on edge insertion using Algorithm PK from the
235  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
236  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
237  * No. 1.7)
238  */
239 struct owner_vertex;
240 
241 struct owner_edge {
242  LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
243  LIST_ENTRY(owner_edge) e_inlink; /* (g) link to's in-edge list */
244  int e_refs; /* (g) number of times added */
245  struct owner_vertex *e_from; /* (c) out-going from here */
246  struct owner_vertex *e_to; /* (c) in-coming to here */
247 };
248 LIST_HEAD(owner_edge_list, owner_edge);
249 
250 struct owner_vertex {
251  TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
252  uint32_t v_gen; /* (g) workspace for edge insertion */
253  int v_order; /* (g) order of vertex in graph */
254  struct owner_edge_list v_outedges;/* (g) list of out-edges */
255  struct owner_edge_list v_inedges; /* (g) list of in-edges */
256  struct lock_owner *v_owner; /* (c) corresponding lock owner */
257 };
258 TAILQ_HEAD(owner_vertex_list, owner_vertex);
259 
260 struct owner_graph {
261  struct owner_vertex** g_vertices; /* (g) pointers to vertices */
262  int g_size; /* (g) number of vertices */
263  int g_space; /* (g) space allocated for vertices */
264  int *g_indexbuf; /* (g) workspace for loop detection */
265  uint32_t g_gen; /* (g) increment when re-ordering */
266 };
267 
268 static struct sx lf_owner_graph_lock;
270 
271 /*
272  * Initialise various structures and locks.
273  */
274 static void
276 {
277  int i;
278 
279  sx_init(&lf_lock_states_lock, "lock states lock");
280  LIST_INIT(&lf_lock_states);
281 
282  sx_init(&lf_lock_owners_lock, "lock owners lock");
283  for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
284  LIST_INIT(&lf_lock_owners[i]);
285 
286  sx_init(&lf_owner_graph_lock, "owner graph lock");
288 }
289 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
290 
291 /*
292  * Generate a hash value for a lock owner.
293  */
294 static int
295 lf_hash_owner(caddr_t id, struct flock *fl, int flags)
296 {
297  uint32_t h;
298 
299  if (flags & F_REMOTE) {
300  h = HASHSTEP(0, fl->l_pid);
301  h = HASHSTEP(h, fl->l_sysid);
302  } else if (flags & F_FLOCK) {
303  h = ((uintptr_t) id) >> 7;
304  } else {
305  struct proc *p = (struct proc *) id;
306  h = HASHSTEP(0, p->p_pid);
307  h = HASHSTEP(h, 0);
308  }
309 
310  return (h % LOCK_OWNER_HASH_SIZE);
311 }
312 
313 /*
314  * Return true if a lock owner matches the details passed to
315  * lf_advlock.
316  */
317 static int
318 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
319  int flags)
320 {
321  if (flags & F_REMOTE) {
322  return lo->lo_pid == fl->l_pid
323  && lo->lo_sysid == fl->l_sysid;
324  } else {
325  return lo->lo_id == id;
326  }
327 }
328 
329 static struct lockf_entry *
331 {
332  struct lockf_entry *lf;
333 
334  lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
335 
336 #ifdef LOCKF_DEBUG
337  if (lockf_debug & 4)
338  printf("Allocated lock %p\n", lf);
339 #endif
340  if (lo) {
341  sx_xlock(&lf_lock_owners_lock);
342  lo->lo_refs++;
343  sx_xunlock(&lf_lock_owners_lock);
344  lf->lf_owner = lo;
345  }
346 
347  return (lf);
348 }
349 
350 static int
351 lf_free_lock(struct lockf_entry *lock)
352 {
353 
354  KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
355  if (--lock->lf_refs > 0)
356  return (0);
357  /*
358  * Adjust the lock_owner reference count and
359  * reclaim the entry if this is the last lock
360  * for that owner.
361  */
362  struct lock_owner *lo = lock->lf_owner;
363  if (lo) {
364  KASSERT(LIST_EMPTY(&lock->lf_outedges),
365  ("freeing lock with dependancies"));
366  KASSERT(LIST_EMPTY(&lock->lf_inedges),
367  ("freeing lock with dependants"));
368  sx_xlock(&lf_lock_owners_lock);
369  KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
370  lo->lo_refs--;
371  if (lo->lo_refs == 0) {
372 #ifdef LOCKF_DEBUG
373  if (lockf_debug & 1)
374  printf("lf_free_lock: freeing lock owner %p\n",
375  lo);
376 #endif
377  if (lo->lo_vertex) {
378  sx_xlock(&lf_owner_graph_lock);
380  lo->lo_vertex);
381  sx_xunlock(&lf_owner_graph_lock);
382  }
383  LIST_REMOVE(lo, lo_link);
384  free(lo, M_LOCKF);
385 #ifdef LOCKF_DEBUG
386  if (lockf_debug & 4)
387  printf("Freed lock owner %p\n", lo);
388 #endif
389  }
390  sx_unlock(&lf_lock_owners_lock);
391  }
392  if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
393  vrele(lock->lf_vnode);
394  lock->lf_vnode = NULL;
395  }
396 #ifdef LOCKF_DEBUG
397  if (lockf_debug & 4)
398  printf("Freed lock %p\n", lock);
399 #endif
400  free(lock, M_LOCKF);
401  return (1);
402 }
403 
404 /*
405  * Advisory record locking support
406  */
407 int
408 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
409  u_quad_t size)
410 {
411  struct lockf *state, *freestate = NULL;
412  struct flock *fl = ap->a_fl;
413  struct lockf_entry *lock;
414  struct vnode *vp = ap->a_vp;
415  caddr_t id = ap->a_id;
416  int flags = ap->a_flags;
417  int hash;
418  struct lock_owner *lo;
419  off_t start, end, oadd;
420  int error;
421 
422  /*
423  * Handle the F_UNLKSYS case first - no need to mess about
424  * creating a lock owner for this one.
425  */
426  if (ap->a_op == F_UNLCKSYS) {
427  lf_clearremotesys(fl->l_sysid);
428  return (0);
429  }
430 
431  /*
432  * Convert the flock structure into a start and end.
433  */
434  switch (fl->l_whence) {
435 
436  case SEEK_SET:
437  case SEEK_CUR:
438  /*
439  * Caller is responsible for adding any necessary offset
440  * when SEEK_CUR is used.
441  */
442  start = fl->l_start;
443  break;
444 
445  case SEEK_END:
446  if (size > OFF_MAX ||
447  (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
448  return (EOVERFLOW);
449  start = size + fl->l_start;
450  break;
451 
452  default:
453  return (EINVAL);
454  }
455  if (start < 0)
456  return (EINVAL);
457  if (fl->l_len < 0) {
458  if (start == 0)
459  return (EINVAL);
460  end = start - 1;
461  start += fl->l_len;
462  if (start < 0)
463  return (EINVAL);
464  } else if (fl->l_len == 0) {
465  end = OFF_MAX;
466  } else {
467  oadd = fl->l_len - 1;
468  if (oadd > OFF_MAX - start)
469  return (EOVERFLOW);
470  end = start + oadd;
471  }
472 
473 retry_setlock:
474 
475  /*
476  * Avoid the common case of unlocking when inode has no locks.
477  */
478  VI_LOCK(vp);
479  if ((*statep) == NULL) {
480  if (ap->a_op != F_SETLK) {
481  fl->l_type = F_UNLCK;
482  VI_UNLOCK(vp);
483  return (0);
484  }
485  }
486  VI_UNLOCK(vp);
487 
488  /*
489  * Map our arguments to an existing lock owner or create one
490  * if this is the first time we have seen this owner.
491  */
492  hash = lf_hash_owner(id, fl, flags);
493  sx_xlock(&lf_lock_owners_lock);
494  LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link)
495  if (lf_owner_matches(lo, id, fl, flags))
496  break;
497  if (!lo) {
498  /*
499  * We initialise the lock with a reference
500  * count which matches the new lockf_entry
501  * structure created below.
502  */
503  lo = malloc(sizeof(struct lock_owner), M_LOCKF,
504  M_WAITOK|M_ZERO);
505 #ifdef LOCKF_DEBUG
506  if (lockf_debug & 4)
507  printf("Allocated lock owner %p\n", lo);
508 #endif
509 
510  lo->lo_refs = 1;
511  lo->lo_flags = flags;
512  lo->lo_id = id;
513  if (flags & F_REMOTE) {
514  lo->lo_pid = fl->l_pid;
515  lo->lo_sysid = fl->l_sysid;
516  } else if (flags & F_FLOCK) {
517  lo->lo_pid = -1;
518  lo->lo_sysid = 0;
519  } else {
520  struct proc *p = (struct proc *) id;
521  lo->lo_pid = p->p_pid;
522  lo->lo_sysid = 0;
523  }
524  lo->lo_vertex = NULL;
525 
526 #ifdef LOCKF_DEBUG
527  if (lockf_debug & 1) {
528  printf("lf_advlockasync: new lock owner %p ", lo);
529  lf_print_owner(lo);
530  printf("\n");
531  }
532 #endif
533 
534  LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link);
535  } else {
536  /*
537  * We have seen this lock owner before, increase its
538  * reference count to account for the new lockf_entry
539  * structure we create below.
540  */
541  lo->lo_refs++;
542  }
543  sx_xunlock(&lf_lock_owners_lock);
544 
545  /*
546  * Create the lockf structure. We initialise the lf_owner
547  * field here instead of in lf_alloc_lock() to avoid paying
548  * the lf_lock_owners_lock tax twice.
549  */
550  lock = lf_alloc_lock(NULL);
551  lock->lf_refs = 1;
552  lock->lf_start = start;
553  lock->lf_end = end;
554  lock->lf_owner = lo;
555  lock->lf_vnode = vp;
556  if (flags & F_REMOTE) {
557  /*
558  * For remote locks, the caller may release its ref to
559  * the vnode at any time - we have to ref it here to
560  * prevent it from being recycled unexpectedly.
561  */
562  vref(vp);
563  }
564 
565  /*
566  * XXX The problem is that VTOI is ufs specific, so it will
567  * break LOCKF_DEBUG for all other FS's other than UFS because
568  * it casts the vnode->data ptr to struct inode *.
569  */
570 /* lock->lf_inode = VTOI(ap->a_vp); */
571  lock->lf_inode = (struct inode *)0;
572  lock->lf_type = fl->l_type;
573  LIST_INIT(&lock->lf_outedges);
574  LIST_INIT(&lock->lf_inedges);
575  lock->lf_async_task = ap->a_task;
576  lock->lf_flags = ap->a_flags;
577 
578  /*
579  * Do the requested operation. First find our state structure
580  * and create a new one if necessary - the caller's *statep
581  * variable and the state's ls_threads count is protected by
582  * the vnode interlock.
583  */
584  VI_LOCK(vp);
585  if (vp->v_iflag & VI_DOOMED) {
586  VI_UNLOCK(vp);
587  lf_free_lock(lock);
588  return (ENOENT);
589  }
590 
591  /*
592  * Allocate a state structure if necessary.
593  */
594  state = *statep;
595  if (state == NULL) {
596  struct lockf *ls;
597 
598  VI_UNLOCK(vp);
599 
600  ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
601  sx_init(&ls->ls_lock, "ls_lock");
602  LIST_INIT(&ls->ls_active);
603  LIST_INIT(&ls->ls_pending);
604  ls->ls_threads = 1;
605 
606  sx_xlock(&lf_lock_states_lock);
607  LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
608  sx_xunlock(&lf_lock_states_lock);
609 
610  /*
611  * Cope if we lost a race with some other thread while
612  * trying to allocate memory.
613  */
614  VI_LOCK(vp);
615  if (vp->v_iflag & VI_DOOMED) {
616  VI_UNLOCK(vp);
617  sx_xlock(&lf_lock_states_lock);
618  LIST_REMOVE(ls, ls_link);
619  sx_xunlock(&lf_lock_states_lock);
620  sx_destroy(&ls->ls_lock);
621  free(ls, M_LOCKF);
622  lf_free_lock(lock);
623  return (ENOENT);
624  }
625  if ((*statep) == NULL) {
626  state = *statep = ls;
627  VI_UNLOCK(vp);
628  } else {
629  state = *statep;
630  state->ls_threads++;
631  VI_UNLOCK(vp);
632 
633  sx_xlock(&lf_lock_states_lock);
634  LIST_REMOVE(ls, ls_link);
635  sx_xunlock(&lf_lock_states_lock);
636  sx_destroy(&ls->ls_lock);
637  free(ls, M_LOCKF);
638  }
639  } else {
640  state->ls_threads++;
641  VI_UNLOCK(vp);
642  }
643 
644  sx_xlock(&state->ls_lock);
645  /*
646  * Recheck the doomed vnode after state->ls_lock is
647  * locked. lf_purgelocks() requires that no new threads add
648  * pending locks when vnode is marked by VI_DOOMED flag.
649  */
650  VI_LOCK(vp);
651  if (vp->v_iflag & VI_DOOMED) {
652  state->ls_threads--;
653  wakeup(state);
654  VI_UNLOCK(vp);
655  sx_xunlock(&state->ls_lock);
656  lf_free_lock(lock);
657  return (ENOENT);
658  }
659  VI_UNLOCK(vp);
660 
661  switch (ap->a_op) {
662  case F_SETLK:
663  error = lf_setlock(state, lock, vp, ap->a_cookiep);
664  break;
665 
666  case F_UNLCK:
667  error = lf_clearlock(state, lock);
668  lf_free_lock(lock);
669  break;
670 
671  case F_GETLK:
672  error = lf_getlock(state, lock, fl);
673  lf_free_lock(lock);
674  break;
675 
676  case F_CANCEL:
677  if (ap->a_cookiep)
678  error = lf_cancel(state, lock, *ap->a_cookiep);
679  else
680  error = EINVAL;
681  lf_free_lock(lock);
682  break;
683 
684  default:
685  lf_free_lock(lock);
686  error = EINVAL;
687  break;
688  }
689 
690 #ifdef INVARIANTS
691  /*
692  * Check for some can't happen stuff. In this case, the active
693  * lock list becoming disordered or containing mutually
694  * blocking locks. We also check the pending list for locks
695  * which should be active (i.e. have no out-going edges).
696  */
697  LIST_FOREACH(lock, &state->ls_active, lf_link) {
698  struct lockf_entry *lf;
699  if (LIST_NEXT(lock, lf_link))
700  KASSERT((lock->lf_start
701  <= LIST_NEXT(lock, lf_link)->lf_start),
702  ("locks disordered"));
703  LIST_FOREACH(lf, &state->ls_active, lf_link) {
704  if (lock == lf)
705  break;
706  KASSERT(!lf_blocks(lock, lf),
707  ("two conflicting active locks"));
708  if (lock->lf_owner == lf->lf_owner)
709  KASSERT(!lf_overlaps(lock, lf),
710  ("two overlapping locks from same owner"));
711  }
712  }
713  LIST_FOREACH(lock, &state->ls_pending, lf_link) {
714  KASSERT(!LIST_EMPTY(&lock->lf_outedges),
715  ("pending lock which should be active"));
716  }
717 #endif
718  sx_xunlock(&state->ls_lock);
719 
720  /*
721  * If we have removed the last active lock on the vnode and
722  * this is the last thread that was in-progress, we can free
723  * the state structure. We update the caller's pointer inside
724  * the vnode interlock but call free outside.
725  *
726  * XXX alternatively, keep the state structure around until
727  * the filesystem recycles - requires a callback from the
728  * filesystem.
729  */
730  VI_LOCK(vp);
731 
732  state->ls_threads--;
733  wakeup(state);
734  if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
735  KASSERT(LIST_EMPTY(&state->ls_pending),
736  ("freeing state with pending locks"));
737  freestate = state;
738  *statep = NULL;
739  }
740 
741  VI_UNLOCK(vp);
742 
743  if (freestate) {
744  sx_xlock(&lf_lock_states_lock);
745  LIST_REMOVE(freestate, ls_link);
746  sx_xunlock(&lf_lock_states_lock);
747  sx_destroy(&freestate->ls_lock);
748  free(freestate, M_LOCKF);
749  }
750 
751  if (error == EDOOFUS) {
752  KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
753  goto retry_setlock;
754  }
755  return (error);
756 }
757 
758 int
759 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
760 {
761  struct vop_advlockasync_args a;
762 
763  a.a_vp = ap->a_vp;
764  a.a_id = ap->a_id;
765  a.a_op = ap->a_op;
766  a.a_fl = ap->a_fl;
767  a.a_flags = ap->a_flags;
768  a.a_task = NULL;
769  a.a_cookiep = NULL;
770 
771  return (lf_advlockasync(&a, statep, size));
772 }
773 
774 void
775 lf_purgelocks(struct vnode *vp, struct lockf **statep)
776 {
777  struct lockf *state;
778  struct lockf_entry *lock, *nlock;
779 
780  /*
781  * For this to work correctly, the caller must ensure that no
782  * other threads enter the locking system for this vnode,
783  * e.g. by checking VI_DOOMED. We wake up any threads that are
784  * sleeping waiting for locks on this vnode and then free all
785  * the remaining locks.
786  */
787  VI_LOCK(vp);
788  KASSERT(vp->v_iflag & VI_DOOMED,
789  ("lf_purgelocks: vp %p has not vgone yet", vp));
790  state = *statep;
791  if (state) {
792  *statep = NULL;
793  state->ls_threads++;
794  VI_UNLOCK(vp);
795 
796  sx_xlock(&state->ls_lock);
797  sx_xlock(&lf_owner_graph_lock);
798  LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
799  LIST_REMOVE(lock, lf_link);
800  lf_remove_outgoing(lock);
801  lf_remove_incoming(lock);
802 
803  /*
804  * If its an async lock, we can just free it
805  * here, otherwise we let the sleeping thread
806  * free it.
807  */
808  if (lock->lf_async_task) {
809  lf_free_lock(lock);
810  } else {
811  lock->lf_flags |= F_INTR;
812  wakeup(lock);
813  }
814  }
815  sx_xunlock(&lf_owner_graph_lock);
816  sx_xunlock(&state->ls_lock);
817 
818  /*
819  * Wait for all other threads, sleeping and otherwise
820  * to leave.
821  */
822  VI_LOCK(vp);
823  while (state->ls_threads > 1)
824  msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
825  VI_UNLOCK(vp);
826 
827  /*
828  * We can just free all the active locks since they
829  * will have no dependancies (we removed them all
830  * above). We don't need to bother locking since we
831  * are the last thread using this state structure.
832  */
833  KASSERT(LIST_EMPTY(&state->ls_pending),
834  ("lock pending for %p", state));
835  LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
836  LIST_REMOVE(lock, lf_link);
837  lf_free_lock(lock);
838  }
839  sx_xlock(&lf_lock_states_lock);
840  LIST_REMOVE(state, ls_link);
841  sx_xunlock(&lf_lock_states_lock);
842  sx_destroy(&state->ls_lock);
843  free(state, M_LOCKF);
844  } else {
845  VI_UNLOCK(vp);
846  }
847 }
848 
849 /*
850  * Return non-zero if locks 'x' and 'y' overlap.
851  */
852 static int
853 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
854 {
855 
856  return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
857 }
858 
859 /*
860  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
861  */
862 static int
863 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
864 {
865 
866  return x->lf_owner != y->lf_owner
867  && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
868  && lf_overlaps(x, y);
869 }
870 
871 /*
872  * Allocate a lock edge from the free list
873  */
874 static struct lockf_edge *
876 {
877 
878  return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
879 }
880 
881 /*
882  * Free a lock edge.
883  */
884 static void
885 lf_free_edge(struct lockf_edge *e)
886 {
887 
888  free(e, M_LOCKF);
889 }
890 
891 
892 /*
893  * Ensure that the lock's owner has a corresponding vertex in the
894  * owner graph.
895  */
896 static void
897 lf_alloc_vertex(struct lockf_entry *lock)
898 {
899  struct owner_graph *g = &lf_owner_graph;
900 
901  if (!lock->lf_owner->lo_vertex)
902  lock->lf_owner->lo_vertex =
903  graph_alloc_vertex(g, lock->lf_owner);
904 }
905 
906 /*
907  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
908  * the new edge would cause a cycle in the owner graph.
909  */
910 static int
911 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
912 {
913  struct owner_graph *g = &lf_owner_graph;
914  struct lockf_edge *e;
915  int error;
916 
917 #ifdef INVARIANTS
918  LIST_FOREACH(e, &x->lf_outedges, le_outlink)
919  KASSERT(e->le_to != y, ("adding lock edge twice"));
920 #endif
921 
922  /*
923  * Make sure the two owners have entries in the owner graph.
924  */
925  lf_alloc_vertex(x);
926  lf_alloc_vertex(y);
927 
928  error = graph_add_edge(g, x->lf_owner->lo_vertex,
929  y->lf_owner->lo_vertex);
930  if (error)
931  return (error);
932 
933  e = lf_alloc_edge();
934  LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
935  LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
936  e->le_from = x;
937  e->le_to = y;
938 
939  return (0);
940 }
941 
942 /*
943  * Remove an edge from the lock graph.
944  */
945 static void
946 lf_remove_edge(struct lockf_edge *e)
947 {
948  struct owner_graph *g = &lf_owner_graph;
949  struct lockf_entry *x = e->le_from;
950  struct lockf_entry *y = e->le_to;
951 
952  graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
953  LIST_REMOVE(e, le_outlink);
954  LIST_REMOVE(e, le_inlink);
955  e->le_from = NULL;
956  e->le_to = NULL;
957  lf_free_edge(e);
958 }
959 
960 /*
961  * Remove all out-going edges from lock x.
962  */
963 static void
964 lf_remove_outgoing(struct lockf_entry *x)
965 {
966  struct lockf_edge *e;
967 
968  while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
969  lf_remove_edge(e);
970  }
971 }
972 
973 /*
974  * Remove all in-coming edges from lock x.
975  */
976 static void
977 lf_remove_incoming(struct lockf_entry *x)
978 {
979  struct lockf_edge *e;
980 
981  while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
982  lf_remove_edge(e);
983  }
984 }
985 
986 /*
987  * Walk the list of locks for the file and create an out-going edge
988  * from lock to each blocking lock.
989  */
990 static int
991 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
992 {
993  struct lockf_entry *overlap;
994  int error;
995 
996  LIST_FOREACH(overlap, &state->ls_active, lf_link) {
997  /*
998  * We may assume that the active list is sorted by
999  * lf_start.
1000  */
1001  if (overlap->lf_start > lock->lf_end)
1002  break;
1003  if (!lf_blocks(lock, overlap))
1004  continue;
1005 
1006  /*
1007  * We've found a blocking lock. Add the corresponding
1008  * edge to the graphs and see if it would cause a
1009  * deadlock.
1010  */
1011  error = lf_add_edge(lock, overlap);
1012 
1013  /*
1014  * The only error that lf_add_edge returns is EDEADLK.
1015  * Remove any edges we added and return the error.
1016  */
1017  if (error) {
1018  lf_remove_outgoing(lock);
1019  return (error);
1020  }
1021  }
1022 
1023  /*
1024  * We also need to add edges to sleeping locks that block
1025  * us. This ensures that lf_wakeup_lock cannot grant two
1026  * mutually blocking locks simultaneously and also enforces a
1027  * 'first come, first served' fairness model. Note that this
1028  * only happens if we are blocked by at least one active lock
1029  * due to the call to lf_getblock in lf_setlock below.
1030  */
1031  LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1032  if (!lf_blocks(lock, overlap))
1033  continue;
1034  /*
1035  * We've found a blocking lock. Add the corresponding
1036  * edge to the graphs and see if it would cause a
1037  * deadlock.
1038  */
1039  error = lf_add_edge(lock, overlap);
1040 
1041  /*
1042  * The only error that lf_add_edge returns is EDEADLK.
1043  * Remove any edges we added and return the error.
1044  */
1045  if (error) {
1046  lf_remove_outgoing(lock);
1047  return (error);
1048  }
1049  }
1050 
1051  return (0);
1052 }
1053 
1054 /*
1055  * Walk the list of pending locks for the file and create an in-coming
1056  * edge from lock to each blocking lock.
1057  */
1058 static int
1059 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1060 {
1061  struct lockf_entry *overlap;
1062  int error;
1063 
1064  LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1065  if (!lf_blocks(lock, overlap))
1066  continue;
1067 
1068  /*
1069  * We've found a blocking lock. Add the corresponding
1070  * edge to the graphs and see if it would cause a
1071  * deadlock.
1072  */
1073  error = lf_add_edge(overlap, lock);
1074 
1075  /*
1076  * The only error that lf_add_edge returns is EDEADLK.
1077  * Remove any edges we added and return the error.
1078  */
1079  if (error) {
1080  lf_remove_incoming(lock);
1081  return (error);
1082  }
1083  }
1084  return (0);
1085 }
1086 
1087 /*
1088  * Insert lock into the active list, keeping list entries ordered by
1089  * increasing values of lf_start.
1090  */
1091 static void
1092 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1093 {
1094  struct lockf_entry *lf, *lfprev;
1095 
1096  if (LIST_EMPTY(&state->ls_active)) {
1097  LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1098  return;
1099  }
1100 
1101  lfprev = NULL;
1102  LIST_FOREACH(lf, &state->ls_active, lf_link) {
1103  if (lf->lf_start > lock->lf_start) {
1104  LIST_INSERT_BEFORE(lf, lock, lf_link);
1105  return;
1106  }
1107  lfprev = lf;
1108  }
1109  LIST_INSERT_AFTER(lfprev, lock, lf_link);
1110 }
1111 
1112 /*
1113  * Wake up a sleeping lock and remove it from the pending list now
1114  * that all its dependancies have been resolved. The caller should
1115  * arrange for the lock to be added to the active list, adjusting any
1116  * existing locks for the same owner as needed.
1117  */
1118 static void
1119 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1120 {
1121 
1122  /*
1123  * Remove from ls_pending list and wake up the caller
1124  * or start the async notification, as appropriate.
1125  */
1126  LIST_REMOVE(wakelock, lf_link);
1127 #ifdef LOCKF_DEBUG
1128  if (lockf_debug & 1)
1129  lf_print("lf_wakeup_lock: awakening", wakelock);
1130 #endif /* LOCKF_DEBUG */
1131  if (wakelock->lf_async_task) {
1132  taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1133  } else {
1134  wakeup(wakelock);
1135  }
1136 }
1137 
1138 /*
1139  * Re-check all dependant locks and remove edges to locks that we no
1140  * longer block. If 'all' is non-zero, the lock has been removed and
1141  * we must remove all the dependancies, otherwise it has simply been
1142  * reduced but remains active. Any pending locks which have been been
1143  * unblocked are added to 'granted'
1144  */
1145 static void
1146 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1147  struct lockf_entry_list *granted)
1148 {
1149  struct lockf_edge *e, *ne;
1150  struct lockf_entry *deplock;
1151 
1152  LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1153  deplock = e->le_from;
1154  if (all || !lf_blocks(lock, deplock)) {
1155  sx_xlock(&lf_owner_graph_lock);
1156  lf_remove_edge(e);
1157  sx_xunlock(&lf_owner_graph_lock);
1158  if (LIST_EMPTY(&deplock->lf_outedges)) {
1159  lf_wakeup_lock(state, deplock);
1160  LIST_INSERT_HEAD(granted, deplock, lf_link);
1161  }
1162  }
1163  }
1164 }
1165 
1166 /*
1167  * Set the start of an existing active lock, updating dependancies and
1168  * adding any newly woken locks to 'granted'.
1169  */
1170 static void
1171 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1172  struct lockf_entry_list *granted)
1173 {
1174 
1175  KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1176  lock->lf_start = new_start;
1177  LIST_REMOVE(lock, lf_link);
1178  lf_insert_lock(state, lock);
1179  lf_update_dependancies(state, lock, FALSE, granted);
1180 }
1181 
1182 /*
1183  * Set the end of an existing active lock, updating dependancies and
1184  * adding any newly woken locks to 'granted'.
1185  */
1186 static void
1187 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1188  struct lockf_entry_list *granted)
1189 {
1190 
1191  KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1192  lock->lf_end = new_end;
1193  lf_update_dependancies(state, lock, FALSE, granted);
1194 }
1195 
1196 /*
1197  * Add a lock to the active list, updating or removing any current
1198  * locks owned by the same owner and processing any pending locks that
1199  * become unblocked as a result. This code is also used for unlock
1200  * since the logic for updating existing locks is identical.
1201  *
1202  * As a result of processing the new lock, we may unblock existing
1203  * pending locks as a result of downgrading/unlocking. We simply
1204  * activate the newly granted locks by looping.
1205  *
1206  * Since the new lock already has its dependancies set up, we always
1207  * add it to the list (unless its an unlock request). This may
1208  * fragment the lock list in some pathological cases but its probably
1209  * not a real problem.
1210  */
1211 static void
1212 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1213 {
1214  struct lockf_entry *overlap, *lf;
1215  struct lockf_entry_list granted;
1216  int ovcase;
1217 
1218  LIST_INIT(&granted);
1219  LIST_INSERT_HEAD(&granted, lock, lf_link);
1220 
1221  while (!LIST_EMPTY(&granted)) {
1222  lock = LIST_FIRST(&granted);
1223  LIST_REMOVE(lock, lf_link);
1224 
1225  /*
1226  * Skip over locks owned by other processes. Handle
1227  * any locks that overlap and are owned by ourselves.
1228  */
1229  overlap = LIST_FIRST(&state->ls_active);
1230  for (;;) {
1231  ovcase = lf_findoverlap(&overlap, lock, SELF);
1232 
1233 #ifdef LOCKF_DEBUG
1234  if (ovcase && (lockf_debug & 2)) {
1235  printf("lf_setlock: overlap %d", ovcase);
1236  lf_print("", overlap);
1237  }
1238 #endif
1239  /*
1240  * Six cases:
1241  * 0) no overlap
1242  * 1) overlap == lock
1243  * 2) overlap contains lock
1244  * 3) lock contains overlap
1245  * 4) overlap starts before lock
1246  * 5) overlap ends after lock
1247  */
1248  switch (ovcase) {
1249  case 0: /* no overlap */
1250  break;
1251 
1252  case 1: /* overlap == lock */
1253  /*
1254  * We have already setup the
1255  * dependants for the new lock, taking
1256  * into account a possible downgrade
1257  * or unlock. Remove the old lock.
1258  */
1259  LIST_REMOVE(overlap, lf_link);
1260  lf_update_dependancies(state, overlap, TRUE,
1261  &granted);
1262  lf_free_lock(overlap);
1263  break;
1264 
1265  case 2: /* overlap contains lock */
1266  /*
1267  * Just split the existing lock.
1268  */
1269  lf_split(state, overlap, lock, &granted);
1270  break;
1271 
1272  case 3: /* lock contains overlap */
1273  /*
1274  * Delete the overlap and advance to
1275  * the next entry in the list.
1276  */
1277  lf = LIST_NEXT(overlap, lf_link);
1278  LIST_REMOVE(overlap, lf_link);
1279  lf_update_dependancies(state, overlap, TRUE,
1280  &granted);
1281  lf_free_lock(overlap);
1282  overlap = lf;
1283  continue;
1284 
1285  case 4: /* overlap starts before lock */
1286  /*
1287  * Just update the overlap end and
1288  * move on.
1289  */
1290  lf_set_end(state, overlap, lock->lf_start - 1,
1291  &granted);
1292  overlap = LIST_NEXT(overlap, lf_link);
1293  continue;
1294 
1295  case 5: /* overlap ends after lock */
1296  /*
1297  * Change the start of overlap and
1298  * re-insert.
1299  */
1300  lf_set_start(state, overlap, lock->lf_end + 1,
1301  &granted);
1302  break;
1303  }
1304  break;
1305  }
1306 #ifdef LOCKF_DEBUG
1307  if (lockf_debug & 1) {
1308  if (lock->lf_type != F_UNLCK)
1309  lf_print("lf_activate_lock: activated", lock);
1310  else
1311  lf_print("lf_activate_lock: unlocked", lock);
1312  lf_printlist("lf_activate_lock", lock);
1313  }
1314 #endif /* LOCKF_DEBUG */
1315  if (lock->lf_type != F_UNLCK)
1316  lf_insert_lock(state, lock);
1317  }
1318 }
1319 
1320 /*
1321  * Cancel a pending lock request, either as a result of a signal or a
1322  * cancel request for an async lock.
1323  */
1324 static void
1325 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1326 {
1327  struct lockf_entry_list granted;
1328 
1329  /*
1330  * Note it is theoretically possible that cancelling this lock
1331  * may allow some other pending lock to become
1332  * active. Consider this case:
1333  *
1334  * Owner Action Result Dependancies
1335  *
1336  * A: lock [0..0] succeeds
1337  * B: lock [2..2] succeeds
1338  * C: lock [1..2] blocked C->B
1339  * D: lock [0..1] blocked C->B,D->A,D->C
1340  * A: unlock [0..0] C->B,D->C
1341  * C: cancel [1..2]
1342  */
1343 
1344  LIST_REMOVE(lock, lf_link);
1345 
1346  /*
1347  * Removing out-going edges is simple.
1348  */
1349  sx_xlock(&lf_owner_graph_lock);
1350  lf_remove_outgoing(lock);
1351  sx_xunlock(&lf_owner_graph_lock);
1352 
1353  /*
1354  * Removing in-coming edges may allow some other lock to
1355  * become active - we use lf_update_dependancies to figure
1356  * this out.
1357  */
1358  LIST_INIT(&granted);
1359  lf_update_dependancies(state, lock, TRUE, &granted);
1360  lf_free_lock(lock);
1361 
1362  /*
1363  * Feed any newly active locks to lf_activate_lock.
1364  */
1365  while (!LIST_EMPTY(&granted)) {
1366  lock = LIST_FIRST(&granted);
1367  LIST_REMOVE(lock, lf_link);
1368  lf_activate_lock(state, lock);
1369  }
1370 }
1371 
1372 /*
1373  * Set a byte-range lock.
1374  */
1375 static int
1376 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1377  void **cookiep)
1378 {
1379  static char lockstr[] = "lockf";
1380  int priority, error;
1381 
1382 #ifdef LOCKF_DEBUG
1383  if (lockf_debug & 1)
1384  lf_print("lf_setlock", lock);
1385 #endif /* LOCKF_DEBUG */
1386 
1387  /*
1388  * Set the priority
1389  */
1390  priority = PLOCK;
1391  if (lock->lf_type == F_WRLCK)
1392  priority += 4;
1393  if (!(lock->lf_flags & F_NOINTR))
1394  priority |= PCATCH;
1395  /*
1396  * Scan lock list for this file looking for locks that would block us.
1397  */
1398  if (lf_getblock(state, lock)) {
1399  /*
1400  * Free the structure and return if nonblocking.
1401  */
1402  if ((lock->lf_flags & F_WAIT) == 0
1403  && lock->lf_async_task == NULL) {
1404  lf_free_lock(lock);
1405  error = EAGAIN;
1406  goto out;
1407  }
1408 
1409  /*
1410  * For flock type locks, we must first remove
1411  * any shared locks that we hold before we sleep
1412  * waiting for an exclusive lock.
1413  */
1414  if ((lock->lf_flags & F_FLOCK) &&
1415  lock->lf_type == F_WRLCK) {
1416  lock->lf_type = F_UNLCK;
1417  lf_activate_lock(state, lock);
1418  lock->lf_type = F_WRLCK;
1419  }
1420 
1421  /*
1422  * We are blocked. Create edges to each blocking lock,
1423  * checking for deadlock using the owner graph. For
1424  * simplicity, we run deadlock detection for all
1425  * locks, posix and otherwise.
1426  */
1427  sx_xlock(&lf_owner_graph_lock);
1428  error = lf_add_outgoing(state, lock);
1429  sx_xunlock(&lf_owner_graph_lock);
1430 
1431  if (error) {
1432 #ifdef LOCKF_DEBUG
1433  if (lockf_debug & 1)
1434  lf_print("lf_setlock: deadlock", lock);
1435 #endif
1436  lf_free_lock(lock);
1437  goto out;
1438  }
1439 
1440  /*
1441  * We have added edges to everything that blocks
1442  * us. Sleep until they all go away.
1443  */
1444  LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1445 #ifdef LOCKF_DEBUG
1446  if (lockf_debug & 1) {
1447  struct lockf_edge *e;
1448  LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1449  lf_print("lf_setlock: blocking on", e->le_to);
1450  lf_printlist("lf_setlock", e->le_to);
1451  }
1452  }
1453 #endif /* LOCKF_DEBUG */
1454 
1455  if ((lock->lf_flags & F_WAIT) == 0) {
1456  /*
1457  * The caller requested async notification -
1458  * this callback happens when the blocking
1459  * lock is released, allowing the caller to
1460  * make another attempt to take the lock.
1461  */
1462  *cookiep = (void *) lock;
1463  error = EINPROGRESS;
1464  goto out;
1465  }
1466 
1467  lock->lf_refs++;
1468  error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1469  if (lf_free_lock(lock)) {
1470  error = EDOOFUS;
1471  goto out;
1472  }
1473 
1474  /*
1475  * We may have been awakened by a signal and/or by a
1476  * debugger continuing us (in which cases we must
1477  * remove our lock graph edges) and/or by another
1478  * process releasing a lock (in which case our edges
1479  * have already been removed and we have been moved to
1480  * the active list). We may also have been woken by
1481  * lf_purgelocks which we report to the caller as
1482  * EINTR. In that case, lf_purgelocks will have
1483  * removed our lock graph edges.
1484  *
1485  * Note that it is possible to receive a signal after
1486  * we were successfully woken (and moved to the active
1487  * list) but before we resumed execution. In this
1488  * case, our lf_outedges list will be clear. We
1489  * pretend there was no error.
1490  *
1491  * Note also, if we have been sleeping long enough, we
1492  * may now have incoming edges from some newer lock
1493  * which is waiting behind us in the queue.
1494  */
1495  if (lock->lf_flags & F_INTR) {
1496  error = EINTR;
1497  lf_free_lock(lock);
1498  goto out;
1499  }
1500  if (LIST_EMPTY(&lock->lf_outedges)) {
1501  error = 0;
1502  } else {
1503  lf_cancel_lock(state, lock);
1504  goto out;
1505  }
1506 #ifdef LOCKF_DEBUG
1507  if (lockf_debug & 1) {
1508  lf_print("lf_setlock: granted", lock);
1509  }
1510 #endif
1511  goto out;
1512  }
1513  /*
1514  * It looks like we are going to grant the lock. First add
1515  * edges from any currently pending lock that the new lock
1516  * would block.
1517  */
1518  sx_xlock(&lf_owner_graph_lock);
1519  error = lf_add_incoming(state, lock);
1520  sx_xunlock(&lf_owner_graph_lock);
1521  if (error) {
1522 #ifdef LOCKF_DEBUG
1523  if (lockf_debug & 1)
1524  lf_print("lf_setlock: deadlock", lock);
1525 #endif
1526  lf_free_lock(lock);
1527  goto out;
1528  }
1529 
1530  /*
1531  * No blocks!! Add the lock. Note that we will
1532  * downgrade or upgrade any overlapping locks this
1533  * process already owns.
1534  */
1535  lf_activate_lock(state, lock);
1536  error = 0;
1537 out:
1538  return (error);
1539 }
1540 
1541 /*
1542  * Remove a byte-range lock on an inode.
1543  *
1544  * Generally, find the lock (or an overlap to that lock)
1545  * and remove it (or shrink it), then wakeup anyone we can.
1546  */
1547 static int
1548 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1549 {
1550  struct lockf_entry *overlap;
1551 
1552  overlap = LIST_FIRST(&state->ls_active);
1553 
1554  if (overlap == NOLOCKF)
1555  return (0);
1556 #ifdef LOCKF_DEBUG
1557  if (unlock->lf_type != F_UNLCK)
1558  panic("lf_clearlock: bad type");
1559  if (lockf_debug & 1)
1560  lf_print("lf_clearlock", unlock);
1561 #endif /* LOCKF_DEBUG */
1562 
1563  lf_activate_lock(state, unlock);
1564 
1565  return (0);
1566 }
1567 
1568 /*
1569  * Check whether there is a blocking lock, and if so return its
1570  * details in '*fl'.
1571  */
1572 static int
1573 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1574 {
1575  struct lockf_entry *block;
1576 
1577 #ifdef LOCKF_DEBUG
1578  if (lockf_debug & 1)
1579  lf_print("lf_getlock", lock);
1580 #endif /* LOCKF_DEBUG */
1581 
1582  if ((block = lf_getblock(state, lock))) {
1583  fl->l_type = block->lf_type;
1584  fl->l_whence = SEEK_SET;
1585  fl->l_start = block->lf_start;
1586  if (block->lf_end == OFF_MAX)
1587  fl->l_len = 0;
1588  else
1589  fl->l_len = block->lf_end - block->lf_start + 1;
1590  fl->l_pid = block->lf_owner->lo_pid;
1591  fl->l_sysid = block->lf_owner->lo_sysid;
1592  } else {
1593  fl->l_type = F_UNLCK;
1594  }
1595  return (0);
1596 }
1597 
1598 /*
1599  * Cancel an async lock request.
1600  */
1601 static int
1602 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1603 {
1604  struct lockf_entry *reallock;
1605 
1606  /*
1607  * We need to match this request with an existing lock
1608  * request.
1609  */
1610  LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1611  if ((void *) reallock == cookie) {
1612  /*
1613  * Double-check that this lock looks right
1614  * (maybe use a rolling ID for the cancel
1615  * cookie instead?)
1616  */
1617  if (!(reallock->lf_vnode == lock->lf_vnode
1618  && reallock->lf_start == lock->lf_start
1619  && reallock->lf_end == lock->lf_end)) {
1620  return (ENOENT);
1621  }
1622 
1623  /*
1624  * Make sure this lock was async and then just
1625  * remove it from its wait lists.
1626  */
1627  if (!reallock->lf_async_task) {
1628  return (ENOENT);
1629  }
1630 
1631  /*
1632  * Note that since any other thread must take
1633  * state->ls_lock before it can possibly
1634  * trigger the async callback, we are safe
1635  * from a race with lf_wakeup_lock, i.e. we
1636  * can free the lock (actually our caller does
1637  * this).
1638  */
1639  lf_cancel_lock(state, reallock);
1640  return (0);
1641  }
1642  }
1643 
1644  /*
1645  * We didn't find a matching lock - not much we can do here.
1646  */
1647  return (ENOENT);
1648 }
1649 
1650 /*
1651  * Walk the list of locks for an inode and
1652  * return the first blocking lock.
1653  */
1654 static struct lockf_entry *
1655 lf_getblock(struct lockf *state, struct lockf_entry *lock)
1656 {
1657  struct lockf_entry *overlap;
1658 
1659  LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1660  /*
1661  * We may assume that the active list is sorted by
1662  * lf_start.
1663  */
1664  if (overlap->lf_start > lock->lf_end)
1665  break;
1666  if (!lf_blocks(lock, overlap))
1667  continue;
1668  return (overlap);
1669  }
1670  return (NOLOCKF);
1671 }
1672 
1673 /*
1674  * Walk the list of locks for an inode to find an overlapping lock (if
1675  * any) and return a classification of that overlap.
1676  *
1677  * Arguments:
1678  * *overlap The place in the lock list to start looking
1679  * lock The lock which is being tested
1680  * type Pass 'SELF' to test only locks with the same
1681  * owner as lock, or 'OTHER' to test only locks
1682  * with a different owner
1683  *
1684  * Returns one of six values:
1685  * 0) no overlap
1686  * 1) overlap == lock
1687  * 2) overlap contains lock
1688  * 3) lock contains overlap
1689  * 4) overlap starts before lock
1690  * 5) overlap ends after lock
1691  *
1692  * If there is an overlapping lock, '*overlap' is set to point at the
1693  * overlapping lock.
1694  *
1695  * NOTE: this returns only the FIRST overlapping lock. There
1696  * may be more than one.
1697  */
1698 static int
1699 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1700 {
1701  struct lockf_entry *lf;
1702  off_t start, end;
1703  int res;
1704 
1705  if ((*overlap) == NOLOCKF) {
1706  return (0);
1707  }
1708 #ifdef LOCKF_DEBUG
1709  if (lockf_debug & 2)
1710  lf_print("lf_findoverlap: looking for overlap in", lock);
1711 #endif /* LOCKF_DEBUG */
1712  start = lock->lf_start;
1713  end = lock->lf_end;
1714  res = 0;
1715  while (*overlap) {
1716  lf = *overlap;
1717  if (lf->lf_start > end)
1718  break;
1719  if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1720  ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1721  *overlap = LIST_NEXT(lf, lf_link);
1722  continue;
1723  }
1724 #ifdef LOCKF_DEBUG
1725  if (lockf_debug & 2)
1726  lf_print("\tchecking", lf);
1727 #endif /* LOCKF_DEBUG */
1728  /*
1729  * OK, check for overlap
1730  *
1731  * Six cases:
1732  * 0) no overlap
1733  * 1) overlap == lock
1734  * 2) overlap contains lock
1735  * 3) lock contains overlap
1736  * 4) overlap starts before lock
1737  * 5) overlap ends after lock
1738  */
1739  if (start > lf->lf_end) {
1740  /* Case 0 */
1741 #ifdef LOCKF_DEBUG
1742  if (lockf_debug & 2)
1743  printf("no overlap\n");
1744 #endif /* LOCKF_DEBUG */
1745  *overlap = LIST_NEXT(lf, lf_link);
1746  continue;
1747  }
1748  if (lf->lf_start == start && lf->lf_end == end) {
1749  /* Case 1 */
1750 #ifdef LOCKF_DEBUG
1751  if (lockf_debug & 2)
1752  printf("overlap == lock\n");
1753 #endif /* LOCKF_DEBUG */
1754  res = 1;
1755  break;
1756  }
1757  if (lf->lf_start <= start && lf->lf_end >= end) {
1758  /* Case 2 */
1759 #ifdef LOCKF_DEBUG
1760  if (lockf_debug & 2)
1761  printf("overlap contains lock\n");
1762 #endif /* LOCKF_DEBUG */
1763  res = 2;
1764  break;
1765  }
1766  if (start <= lf->lf_start && end >= lf->lf_end) {
1767  /* Case 3 */
1768 #ifdef LOCKF_DEBUG
1769  if (lockf_debug & 2)
1770  printf("lock contains overlap\n");
1771 #endif /* LOCKF_DEBUG */
1772  res = 3;
1773  break;
1774  }
1775  if (lf->lf_start < start && lf->lf_end >= start) {
1776  /* Case 4 */
1777 #ifdef LOCKF_DEBUG
1778  if (lockf_debug & 2)
1779  printf("overlap starts before lock\n");
1780 #endif /* LOCKF_DEBUG */
1781  res = 4;
1782  break;
1783  }
1784  if (lf->lf_start > start && lf->lf_end > end) {
1785  /* Case 5 */
1786 #ifdef LOCKF_DEBUG
1787  if (lockf_debug & 2)
1788  printf("overlap ends after lock\n");
1789 #endif /* LOCKF_DEBUG */
1790  res = 5;
1791  break;
1792  }
1793  panic("lf_findoverlap: default");
1794  }
1795  return (res);
1796 }
1797 
1798 /*
1799  * Split an the existing 'lock1', based on the extent of the lock
1800  * described by 'lock2'. The existing lock should cover 'lock2'
1801  * entirely.
1802  *
1803  * Any pending locks which have been been unblocked are added to
1804  * 'granted'
1805  */
1806 static void
1807 lf_split(struct lockf *state, struct lockf_entry *lock1,
1808  struct lockf_entry *lock2, struct lockf_entry_list *granted)
1809 {
1810  struct lockf_entry *splitlock;
1811 
1812 #ifdef LOCKF_DEBUG
1813  if (lockf_debug & 2) {
1814  lf_print("lf_split", lock1);
1815  lf_print("splitting from", lock2);
1816  }
1817 #endif /* LOCKF_DEBUG */
1818  /*
1819  * Check to see if we don't need to split at all.
1820  */
1821  if (lock1->lf_start == lock2->lf_start) {
1822  lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1823  return;
1824  }
1825  if (lock1->lf_end == lock2->lf_end) {
1826  lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1827  return;
1828  }
1829  /*
1830  * Make a new lock consisting of the last part of
1831  * the encompassing lock.
1832  */
1833  splitlock = lf_alloc_lock(lock1->lf_owner);
1834  memcpy(splitlock, lock1, sizeof *splitlock);
1835  splitlock->lf_refs = 1;
1836  if (splitlock->lf_flags & F_REMOTE)
1837  vref(splitlock->lf_vnode);
1838 
1839  /*
1840  * This cannot cause a deadlock since any edges we would add
1841  * to splitlock already exist in lock1. We must be sure to add
1842  * necessary dependancies to splitlock before we reduce lock1
1843  * otherwise we may accidentally grant a pending lock that
1844  * was blocked by the tail end of lock1.
1845  */
1846  splitlock->lf_start = lock2->lf_end + 1;
1847  LIST_INIT(&splitlock->lf_outedges);
1848  LIST_INIT(&splitlock->lf_inedges);
1849  sx_xlock(&lf_owner_graph_lock);
1850  lf_add_incoming(state, splitlock);
1851  sx_xunlock(&lf_owner_graph_lock);
1852 
1853  lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1854 
1855  /*
1856  * OK, now link it in
1857  */
1858  lf_insert_lock(state, splitlock);
1859 }
1860 
1861 struct lockdesc {
1862  STAILQ_ENTRY(lockdesc) link;
1863  struct vnode *vp;
1864  struct flock fl;
1865 };
1866 STAILQ_HEAD(lockdesclist, lockdesc);
1867 
1868 int
1869 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1870 {
1871  struct lockf *ls;
1872  struct lockf_entry *lf;
1873  struct lockdesc *ldesc;
1874  struct lockdesclist locks;
1875  int error;
1876 
1877  /*
1878  * In order to keep the locking simple, we iterate over the
1879  * active lock lists to build a list of locks that need
1880  * releasing. We then call the iterator for each one in turn.
1881  *
1882  * We take an extra reference to the vnode for the duration to
1883  * make sure it doesn't go away before we are finished.
1884  */
1885  STAILQ_INIT(&locks);
1886  sx_xlock(&lf_lock_states_lock);
1887  LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1888  sx_xlock(&ls->ls_lock);
1889  LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1890  if (lf->lf_owner->lo_sysid != sysid)
1891  continue;
1892 
1893  ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1894  M_WAITOK);
1895  ldesc->vp = lf->lf_vnode;
1896  vref(ldesc->vp);
1897  ldesc->fl.l_start = lf->lf_start;
1898  if (lf->lf_end == OFF_MAX)
1899  ldesc->fl.l_len = 0;
1900  else
1901  ldesc->fl.l_len =
1902  lf->lf_end - lf->lf_start + 1;
1903  ldesc->fl.l_whence = SEEK_SET;
1904  ldesc->fl.l_type = F_UNLCK;
1905  ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1906  ldesc->fl.l_sysid = sysid;
1907  STAILQ_INSERT_TAIL(&locks, ldesc, link);
1908  }
1909  sx_xunlock(&ls->ls_lock);
1910  }
1911  sx_xunlock(&lf_lock_states_lock);
1912 
1913  /*
1914  * Call the iterator function for each lock in turn. If the
1915  * iterator returns an error code, just free the rest of the
1916  * lockdesc structures.
1917  */
1918  error = 0;
1919  while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1920  STAILQ_REMOVE_HEAD(&locks, link);
1921  if (!error)
1922  error = fn(ldesc->vp, &ldesc->fl, arg);
1923  vrele(ldesc->vp);
1924  free(ldesc, M_LOCKF);
1925  }
1926 
1927  return (error);
1928 }
1929 
1930 int
1931 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1932 {
1933  struct lockf *ls;
1934  struct lockf_entry *lf;
1935  struct lockdesc *ldesc;
1936  struct lockdesclist locks;
1937  int error;
1938 
1939  /*
1940  * In order to keep the locking simple, we iterate over the
1941  * active lock lists to build a list of locks that need
1942  * releasing. We then call the iterator for each one in turn.
1943  *
1944  * We take an extra reference to the vnode for the duration to
1945  * make sure it doesn't go away before we are finished.
1946  */
1947  STAILQ_INIT(&locks);
1948  VI_LOCK(vp);
1949  ls = vp->v_lockf;
1950  if (!ls) {
1951  VI_UNLOCK(vp);
1952  return (0);
1953  }
1954  ls->ls_threads++;
1955  VI_UNLOCK(vp);
1956 
1957  sx_xlock(&ls->ls_lock);
1958  LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1959  ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1960  M_WAITOK);
1961  ldesc->vp = lf->lf_vnode;
1962  vref(ldesc->vp);
1963  ldesc->fl.l_start = lf->lf_start;
1964  if (lf->lf_end == OFF_MAX)
1965  ldesc->fl.l_len = 0;
1966  else
1967  ldesc->fl.l_len =
1968  lf->lf_end - lf->lf_start + 1;
1969  ldesc->fl.l_whence = SEEK_SET;
1970  ldesc->fl.l_type = F_UNLCK;
1971  ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1972  ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1973  STAILQ_INSERT_TAIL(&locks, ldesc, link);
1974  }
1975  sx_xunlock(&ls->ls_lock);
1976  VI_LOCK(vp);
1977  ls->ls_threads--;
1978  wakeup(ls);
1979  VI_UNLOCK(vp);
1980 
1981  /*
1982  * Call the iterator function for each lock in turn. If the
1983  * iterator returns an error code, just free the rest of the
1984  * lockdesc structures.
1985  */
1986  error = 0;
1987  while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1988  STAILQ_REMOVE_HEAD(&locks, link);
1989  if (!error)
1990  error = fn(ldesc->vp, &ldesc->fl, arg);
1991  vrele(ldesc->vp);
1992  free(ldesc, M_LOCKF);
1993  }
1994 
1995  return (error);
1996 }
1997 
1998 static int
1999 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
2000 {
2001 
2002  VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
2003  return (0);
2004 }
2005 
2006 void
2008 {
2009 
2010  KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2012 }
2013 
2014 int
2015 lf_countlocks(int sysid)
2016 {
2017  int i;
2018  struct lock_owner *lo;
2019  int count;
2020 
2021  count = 0;
2022  sx_xlock(&lf_lock_owners_lock);
2023  for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
2024  LIST_FOREACH(lo, &lf_lock_owners[i], lo_link)
2025  if (lo->lo_sysid == sysid)
2026  count += lo->lo_refs;
2027  sx_xunlock(&lf_lock_owners_lock);
2028 
2029  return (count);
2030 }
2031 
2032 #ifdef LOCKF_DEBUG
2033 
2034 /*
2035  * Return non-zero if y is reachable from x using a brute force
2036  * search. If reachable and path is non-null, return the route taken
2037  * in path.
2038  */
2039 static int
2040 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2041  struct owner_vertex_list *path)
2042 {
2043  struct owner_edge *e;
2044 
2045  if (x == y) {
2046  if (path)
2047  TAILQ_INSERT_HEAD(path, x, v_link);
2048  return 1;
2049  }
2050 
2051  LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2052  if (graph_reaches(e->e_to, y, path)) {
2053  if (path)
2054  TAILQ_INSERT_HEAD(path, x, v_link);
2055  return 1;
2056  }
2057  }
2058  return 0;
2059 }
2060 
2061 /*
2062  * Perform consistency checks on the graph. Make sure the values of
2063  * v_order are correct. If checkorder is non-zero, check no vertex can
2064  * reach any other vertex with a smaller order.
2065  */
2066 static void
2067 graph_check(struct owner_graph *g, int checkorder)
2068 {
2069  int i, j;
2070 
2071  for (i = 0; i < g->g_size; i++) {
2072  if (!g->g_vertices[i]->v_owner)
2073  continue;
2074  KASSERT(g->g_vertices[i]->v_order == i,
2075  ("lock graph vertices disordered"));
2076  if (checkorder) {
2077  for (j = 0; j < i; j++) {
2078  if (!g->g_vertices[j]->v_owner)
2079  continue;
2080  KASSERT(!graph_reaches(g->g_vertices[i],
2081  g->g_vertices[j], NULL),
2082  ("lock graph vertices disordered"));
2083  }
2084  }
2085  }
2086 }
2087 
2088 static void
2089 graph_print_vertices(struct owner_vertex_list *set)
2090 {
2091  struct owner_vertex *v;
2092 
2093  printf("{ ");
2094  TAILQ_FOREACH(v, set, v_link) {
2095  printf("%d:", v->v_order);
2096  lf_print_owner(v->v_owner);
2097  if (TAILQ_NEXT(v, v_link))
2098  printf(", ");
2099  }
2100  printf(" }\n");
2101 }
2102 
2103 #endif
2104 
2105 /*
2106  * Calculate the sub-set of vertices v from the affected region [y..x]
2107  * where v is reachable from y. Return -1 if a loop was detected
2108  * (i.e. x is reachable from y, otherwise the number of vertices in
2109  * this subset.
2110  */
2111 static int
2113  struct owner_vertex *y, struct owner_vertex_list *delta)
2114 {
2115  uint32_t gen;
2116  struct owner_vertex *v;
2117  struct owner_edge *e;
2118  int n;
2119 
2120  /*
2121  * We start with a set containing just y. Then for each vertex
2122  * v in the set so far unprocessed, we add each vertex that v
2123  * has an out-edge to and that is within the affected region
2124  * [y..x]. If we see the vertex x on our travels, stop
2125  * immediately.
2126  */
2127  TAILQ_INIT(delta);
2128  TAILQ_INSERT_TAIL(delta, y, v_link);
2129  v = y;
2130  n = 1;
2131  gen = g->g_gen;
2132  while (v) {
2133  LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2134  if (e->e_to == x)
2135  return -1;
2136  if (e->e_to->v_order < x->v_order
2137  && e->e_to->v_gen != gen) {
2138  e->e_to->v_gen = gen;
2139  TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2140  n++;
2141  }
2142  }
2143  v = TAILQ_NEXT(v, v_link);
2144  }
2145 
2146  return (n);
2147 }
2148 
2149 /*
2150  * Calculate the sub-set of vertices v from the affected region [y..x]
2151  * where v reaches x. Return the number of vertices in this subset.
2152  */
2153 static int
2155  struct owner_vertex *y, struct owner_vertex_list *delta)
2156 {
2157  uint32_t gen;
2158  struct owner_vertex *v;
2159  struct owner_edge *e;
2160  int n;
2161 
2162  /*
2163  * We start with a set containing just x. Then for each vertex
2164  * v in the set so far unprocessed, we add each vertex that v
2165  * has an in-edge from and that is within the affected region
2166  * [y..x].
2167  */
2168  TAILQ_INIT(delta);
2169  TAILQ_INSERT_TAIL(delta, x, v_link);
2170  v = x;
2171  n = 1;
2172  gen = g->g_gen;
2173  while (v) {
2174  LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2175  if (e->e_from->v_order > y->v_order
2176  && e->e_from->v_gen != gen) {
2177  e->e_from->v_gen = gen;
2178  TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2179  n++;
2180  }
2181  }
2182  v = TAILQ_PREV(v, owner_vertex_list, v_link);
2183  }
2184 
2185  return (n);
2186 }
2187 
2188 static int
2189 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2190 {
2191  struct owner_vertex *v;
2192  int i, j;
2193 
2194  TAILQ_FOREACH(v, set, v_link) {
2195  for (i = n;
2196  i > 0 && indices[i - 1] > v->v_order; i--)
2197  ;
2198  for (j = n - 1; j >= i; j--)
2199  indices[j + 1] = indices[j];
2200  indices[i] = v->v_order;
2201  n++;
2202  }
2203 
2204  return (n);
2205 }
2206 
2207 static int
2208 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2209  struct owner_vertex_list *set)
2210 {
2211  struct owner_vertex *v, *vlowest;
2212 
2213  while (!TAILQ_EMPTY(set)) {
2214  vlowest = NULL;
2215  TAILQ_FOREACH(v, set, v_link) {
2216  if (!vlowest || v->v_order < vlowest->v_order)
2217  vlowest = v;
2218  }
2219  TAILQ_REMOVE(set, vlowest, v_link);
2220  vlowest->v_order = indices[nextunused];
2221  g->g_vertices[vlowest->v_order] = vlowest;
2222  nextunused++;
2223  }
2224 
2225  return (nextunused);
2226 }
2227 
2228 static int
2230  struct owner_vertex *y)
2231 {
2232  struct owner_edge *e;
2233  struct owner_vertex_list deltaF, deltaB;
2234  int nF, nB, n, vi, i;
2235  int *indices;
2236 
2237  sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2238 
2239  LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2240  if (e->e_to == y) {
2241  e->e_refs++;
2242  return (0);
2243  }
2244  }
2245 
2246 #ifdef LOCKF_DEBUG
2247  if (lockf_debug & 8) {
2248  printf("adding edge %d:", x->v_order);
2249  lf_print_owner(x->v_owner);
2250  printf(" -> %d:", y->v_order);
2251  lf_print_owner(y->v_owner);
2252  printf("\n");
2253  }
2254 #endif
2255  if (y->v_order < x->v_order) {
2256  /*
2257  * The new edge violates the order. First find the set
2258  * of affected vertices reachable from y (deltaF) and
2259  * the set of affect vertices affected that reach x
2260  * (deltaB), using the graph generation number to
2261  * detect whether we have visited a given vertex
2262  * already. We re-order the graph so that each vertex
2263  * in deltaB appears before each vertex in deltaF.
2264  *
2265  * If x is a member of deltaF, then the new edge would
2266  * create a cycle. Otherwise, we may assume that
2267  * deltaF and deltaB are disjoint.
2268  */
2269  g->g_gen++;
2270  if (g->g_gen == 0) {
2271  /*
2272  * Generation wrap.
2273  */
2274  for (vi = 0; vi < g->g_size; vi++) {
2275  g->g_vertices[vi]->v_gen = 0;
2276  }
2277  g->g_gen++;
2278  }
2279  nF = graph_delta_forward(g, x, y, &deltaF);
2280  if (nF < 0) {
2281 #ifdef LOCKF_DEBUG
2282  if (lockf_debug & 8) {
2283  struct owner_vertex_list path;
2284  printf("deadlock: ");
2285  TAILQ_INIT(&path);
2286  graph_reaches(y, x, &path);
2287  graph_print_vertices(&path);
2288  }
2289 #endif
2290  return (EDEADLK);
2291  }
2292 
2293 #ifdef LOCKF_DEBUG
2294  if (lockf_debug & 8) {
2295  printf("re-ordering graph vertices\n");
2296  printf("deltaF = ");
2297  graph_print_vertices(&deltaF);
2298  }
2299 #endif
2300 
2301  nB = graph_delta_backward(g, x, y, &deltaB);
2302 
2303 #ifdef LOCKF_DEBUG
2304  if (lockf_debug & 8) {
2305  printf("deltaB = ");
2306  graph_print_vertices(&deltaB);
2307  }
2308 #endif
2309 
2310  /*
2311  * We first build a set of vertex indices (vertex
2312  * order values) that we may use, then we re-assign
2313  * orders first to those vertices in deltaB, then to
2314  * deltaF. Note that the contents of deltaF and deltaB
2315  * may be partially disordered - we perform an
2316  * insertion sort while building our index set.
2317  */
2318  indices = g->g_indexbuf;
2319  n = graph_add_indices(indices, 0, &deltaF);
2320  graph_add_indices(indices, n, &deltaB);
2321 
2322  /*
2323  * We must also be sure to maintain the relative
2324  * ordering of deltaF and deltaB when re-assigning
2325  * vertices. We do this by iteratively removing the
2326  * lowest ordered element from the set and assigning
2327  * it the next value from our new ordering.
2328  */
2329  i = graph_assign_indices(g, indices, 0, &deltaB);
2330  graph_assign_indices(g, indices, i, &deltaF);
2331 
2332 #ifdef LOCKF_DEBUG
2333  if (lockf_debug & 8) {
2334  struct owner_vertex_list set;
2335  TAILQ_INIT(&set);
2336  for (i = 0; i < nB + nF; i++)
2337  TAILQ_INSERT_TAIL(&set,
2338  g->g_vertices[indices[i]], v_link);
2339  printf("new ordering = ");
2340  graph_print_vertices(&set);
2341  }
2342 #endif
2343  }
2344 
2345  KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2346 
2347 #ifdef LOCKF_DEBUG
2348  if (lockf_debug & 8) {
2349  graph_check(g, TRUE);
2350  }
2351 #endif
2352 
2353  e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2354 
2355  LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2356  LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2357  e->e_refs = 1;
2358  e->e_from = x;
2359  e->e_to = y;
2360 
2361  return (0);
2362 }
2363 
2364 /*
2365  * Remove an edge x->y from the graph.
2366  */
2367 static void
2369  struct owner_vertex *y)
2370 {
2371  struct owner_edge *e;
2372 
2373  sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2374 
2375  LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2376  if (e->e_to == y)
2377  break;
2378  }
2379  KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2380 
2381  e->e_refs--;
2382  if (e->e_refs == 0) {
2383 #ifdef LOCKF_DEBUG
2384  if (lockf_debug & 8) {
2385  printf("removing edge %d:", x->v_order);
2386  lf_print_owner(x->v_owner);
2387  printf(" -> %d:", y->v_order);
2388  lf_print_owner(y->v_owner);
2389  printf("\n");
2390  }
2391 #endif
2392  LIST_REMOVE(e, e_outlink);
2393  LIST_REMOVE(e, e_inlink);
2394  free(e, M_LOCKF);
2395  }
2396 }
2397 
2398 /*
2399  * Allocate a vertex from the free list. Return ENOMEM if there are
2400  * none.
2401  */
2402 static struct owner_vertex *
2404 {
2405  struct owner_vertex *v;
2406 
2407  sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2408 
2409  v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2410  if (g->g_size == g->g_space) {
2411  g->g_vertices = realloc(g->g_vertices,
2412  2 * g->g_space * sizeof(struct owner_vertex *),
2413  M_LOCKF, M_WAITOK);
2414  free(g->g_indexbuf, M_LOCKF);
2415  g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2416  M_LOCKF, M_WAITOK);
2417  g->g_space = 2 * g->g_space;
2418  }
2419  v->v_order = g->g_size;
2420  v->v_gen = g->g_gen;
2421  g->g_vertices[g->g_size] = v;
2422  g->g_size++;
2423 
2424  LIST_INIT(&v->v_outedges);
2425  LIST_INIT(&v->v_inedges);
2426  v->v_owner = lo;
2427 
2428  return (v);
2429 }
2430 
2431 static void
2433 {
2434  struct owner_vertex *w;
2435  int i;
2436 
2437  sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2438 
2439  KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2440  KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2441 
2442  /*
2443  * Remove from the graph's array and close up the gap,
2444  * renumbering the other vertices.
2445  */
2446  for (i = v->v_order + 1; i < g->g_size; i++) {
2447  w = g->g_vertices[i];
2448  w->v_order--;
2449  g->g_vertices[i - 1] = w;
2450  }
2451  g->g_size--;
2452 
2453  free(v, M_LOCKF);
2454 }
2455 
2456 static struct owner_graph *
2458 {
2459 
2460  g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2461  M_LOCKF, M_WAITOK);
2462  g->g_size = 0;
2463  g->g_space = 10;
2464  g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2465  g->g_gen = 0;
2466 
2467  return (g);
2468 }
2469 
2470 #ifdef LOCKF_DEBUG
2471 /*
2472  * Print description of a lock owner
2473  */
2474 static void
2475 lf_print_owner(struct lock_owner *lo)
2476 {
2477 
2478  if (lo->lo_flags & F_REMOTE) {
2479  printf("remote pid %d, system %d",
2480  lo->lo_pid, lo->lo_sysid);
2481  } else if (lo->lo_flags & F_FLOCK) {
2482  printf("file %p", lo->lo_id);
2483  } else {
2484  printf("local pid %d", lo->lo_pid);
2485  }
2486 }
2487 
2488 /*
2489  * Print out a lock.
2490  */
2491 static void
2492 lf_print(char *tag, struct lockf_entry *lock)
2493 {
2494 
2495  printf("%s: lock %p for ", tag, (void *)lock);
2496  lf_print_owner(lock->lf_owner);
2497  if (lock->lf_inode != (struct inode *)0)
2498  printf(" in ino %ju on dev <%s>,",
2499  (uintmax_t)lock->lf_inode->i_number,
2500  devtoname(lock->lf_inode->i_dev));
2501  printf(" %s, start %jd, end ",
2502  lock->lf_type == F_RDLCK ? "shared" :
2503  lock->lf_type == F_WRLCK ? "exclusive" :
2504  lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2505  (intmax_t)lock->lf_start);
2506  if (lock->lf_end == OFF_MAX)
2507  printf("EOF");
2508  else
2509  printf("%jd", (intmax_t)lock->lf_end);
2510  if (!LIST_EMPTY(&lock->lf_outedges))
2511  printf(" block %p\n",
2512  (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2513  else
2514  printf("\n");
2515 }
2516 
2517 static void
2518 lf_printlist(char *tag, struct lockf_entry *lock)
2519 {
2520  struct lockf_entry *lf, *blk;
2521  struct lockf_edge *e;
2522 
2523  if (lock->lf_inode == (struct inode *)0)
2524  return;
2525 
2526  printf("%s: Lock list for ino %ju on dev <%s>:\n",
2527  tag, (uintmax_t)lock->lf_inode->i_number,
2528  devtoname(lock->lf_inode->i_dev));
2529  LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2530  printf("\tlock %p for ",(void *)lf);
2531  lf_print_owner(lock->lf_owner);
2532  printf(", %s, start %jd, end %jd",
2533  lf->lf_type == F_RDLCK ? "shared" :
2534  lf->lf_type == F_WRLCK ? "exclusive" :
2535  lf->lf_type == F_UNLCK ? "unlock" :
2536  "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2537  LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2538  blk = e->le_to;
2539  printf("\n\t\tlock request %p for ", (void *)blk);
2540  lf_print_owner(blk->lf_owner);
2541  printf(", %s, start %jd, end %jd",
2542  blk->lf_type == F_RDLCK ? "shared" :
2543  blk->lf_type == F_WRLCK ? "exclusive" :
2544  blk->lf_type == F_UNLCK ? "unlock" :
2545  "unknown", (intmax_t)blk->lf_start,
2546  (intmax_t)blk->lf_end);
2547  if (!LIST_EMPTY(&blk->lf_inedges))
2548  panic("lf_printlist: bad list");
2549  }
2550  printf("\n");
2551  }
2552 }
2553 #endif /* LOCKF_DEBUG */
static void lf_remove_edge(struct lockf_edge *)
Definition: kern_lockf.c:946
uint32_t g_gen
Definition: kern_lockf.c:265
static void lf_set_start(struct lockf *, struct lockf_entry *, off_t, struct lockf_entry_list *)
Definition: kern_lockf.c:1171
int lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
Definition: kern_lockf.c:759
static void lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
Definition: kern_lockf.c:1325
SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL)
static void lf_remove_incoming(struct lockf_entry *)
Definition: kern_lockf.c:977
static struct sx lf_lock_states_lock
Definition: kern_lockf.c:205
METHOD int set
Definition: cpufreq_if.m:43
int lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep, u_quad_t size)
Definition: kern_lockf.c:408
static void lf_alloc_vertex(struct lockf_entry *)
Definition: kern_lockf.c:897
void * realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:616
static MALLOC_DEFINE(M_LOCKF,"lockf","Byte-range locking structures")
char * path
static void lf_init(void *)
Definition: kern_lockf.c:275
static int graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
Definition: kern_lockf.c:2189
static int lf_clearlock(struct lockf *, struct lockf_entry *)
Definition: kern_lockf.c:1548
static struct sx lf_lock_owners_lock
Definition: kern_lockf.c:207
#define NOLOCKF
Definition: kern_lockf.c:100
void *** start
Definition: linker_if.m:86
static struct lockf_edge * lf_alloc_edge(void)
Definition: kern_lockf.c:875
void * malloc(unsigned long size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:454
__FBSDID("$BSDSUniX$")
static struct lock_owner_list lf_lock_owners[LOCK_OWNER_HASH_SIZE]
Definition: kern_lockf.c:208
static struct lockf_entry * lf_alloc_lock(struct lock_owner *)
Definition: kern_lockf.c:330
void panic(const char *fmt,...)
static void lf_insert_lock(struct lockf *, struct lockf_entry *)
Definition: kern_lockf.c:1092
static void lf_split(struct lockf *, struct lockf_entry *, struct lockf_entry *, struct lockf_entry_list *)
Definition: kern_lockf.c:1807
static int lf_blocks(struct lockf_entry *, struct lockf_entry *)
Definition: kern_lockf.c:863
int * g_indexbuf
Definition: kern_lockf.c:264
static int lf_add_edge(struct lockf_entry *, struct lockf_entry *)
Definition: kern_lockf.c:911
SYSCTL_INT(_debug, OID_AUTO, boothowto, CTLFLAG_RD,&boothowto, 0,"Boot control flags, passed from loader")
int lf_countlocks(int sysid)
Definition: kern_lockf.c:2015
static struct lockf_entry * lf_getblock(struct lockf *, struct lockf_entry *)
Definition: kern_lockf.c:1655
int * type
Definition: cpufreq_if.m:98
static void lf_set_end(struct lockf *, struct lockf_entry *, off_t, struct lockf_entry_list *)
Definition: kern_lockf.c:1187
int lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
Definition: kern_lockf.c:1931
static struct owner_vertex * graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
Definition: kern_lockf.c:2403
void lf_clearremotesys(int sysid)
Definition: kern_lockf.c:2007
void vref(struct vnode *vp)
Definition: vfs_subr.c:2302
LIST_HEAD(lock_owner_list, lock_owner)
static int dummy
static void graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
Definition: kern_lockf.c:2432
struct owner_vertex ** g_vertices
Definition: kern_lockf.c:261
static void graph_remove_edge(struct owner_graph *g, struct owner_vertex *x, struct owner_vertex *y)
Definition: kern_lockf.c:2368
int lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
Definition: kern_lockf.c:1869
static int lf_findoverlap(struct lockf_entry **, struct lockf_entry *, int)
Definition: kern_lockf.c:1699
#define SELF
Definition: kern_lockf.c:101
static int lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
Definition: kern_lockf.c:1999
static struct owner_graph lf_owner_graph
Definition: kern_lockf.c:269
static int lf_cancel(struct lockf *, struct lockf_entry *, void *)
Definition: kern_lockf.c:1602
static int lf_add_incoming(struct lockf *, struct lockf_entry *)
Definition: kern_lockf.c:1059
static int lf_hash_owner(caddr_t, struct flock *, int)
Definition: kern_lockf.c:295
void free(void *addr, struct malloc_type *mtp)
Definition: kern_malloc.c:554
int printf(const char *fmt,...)
Definition: subr_prf.c:367
int taskqueue_enqueue(struct taskqueue *queue, struct task *task)
static int lf_getlock(struct lockf *, struct lockf_entry *, struct flock *)
Definition: kern_lockf.c:1573
static int graph_delta_forward(struct owner_graph *g, struct owner_vertex *x, struct owner_vertex *y, struct owner_vertex_list *delta)
Definition: kern_lockf.c:2112
TAILQ_HEAD(owner_vertex_list, owner_vertex)
static void lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
Definition: kern_lockf.c:1212
static void lf_update_dependancies(struct lockf *, struct lockf_entry *, int all, struct lockf_entry_list *)
Definition: kern_lockf.c:1146
#define OTHERS
Definition: kern_lockf.c:102
static int graph_assign_indices(struct owner_graph *g, int *indices, int nextunused, struct owner_vertex_list *set)
Definition: kern_lockf.c:2208
static int graph_add_edge(struct owner_graph *g, struct owner_vertex *x, struct owner_vertex *y)
Definition: kern_lockf.c:2229
void wakeup(void *ident)
Definition: kern_synch.c:378
static void lf_wakeup_lock(struct lockf *, struct lockf_entry *)
Definition: kern_lockf.c:1119
void vrele(struct vnode *vp)
Definition: vfs_subr.c:2416
int priority
Definition: cpufreq_if.m:46
void lf_purgelocks(struct vnode *vp, struct lockf **statep)
Definition: kern_lockf.c:775
const char * devtoname(struct cdev *dev)
Definition: kern_conf.c:1177
static void lf_remove_outgoing(struct lockf_entry *)
Definition: kern_lockf.c:964
static void lf_free_edge(struct lockf_edge *)
Definition: kern_lockf.c:885
static struct sx lf_owner_graph_lock
Definition: kern_lockf.c:268
static struct owner_graph * graph_init(struct owner_graph *g)
Definition: kern_lockf.c:2457
static struct lockf_list lf_lock_states
Definition: kern_lockf.c:206
static int lf_setlock(struct lockf *, struct lockf_entry *, struct vnode *, void **cookiep)
Definition: kern_lockf.c:1376
static int lf_add_outgoing(struct lockf *, struct lockf_entry *)
Definition: kern_lockf.c:991
static int graph_delta_backward(struct owner_graph *g, struct owner_vertex *x, struct owner_vertex *y, struct owner_vertex_list *delta)
Definition: kern_lockf.c:2154
static int lf_owner_matches(struct lock_owner *, caddr_t, struct flock *, int)
Definition: kern_lockf.c:318
STAILQ_HEAD(lockdesclist, lockdesc)
static int lf_free_lock(struct lockf_entry *)
Definition: kern_lockf.c:351
static int lf_overlaps(struct lockf_entry *, struct lockf_entry *)
Definition: kern_lockf.c:853
#define LOCK_OWNER_HASH_SIZE
Definition: kern_lockf.c:191
void sx_destroy(struct sx *sx)
Definition: kern_sx.c:234
int * count
Definition: cpufreq_if.m:63