FreeBSD kernel kern code
subr_sleepqueue.c
Go to the documentation of this file.
1 /*-
2  * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  * notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  * notice, this list of conditions and the following disclaimer in the
12  * documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * Implementation of sleep queues used to hold queue of threads blocked on
29  * a wait channel. Sleep queues different from turnstiles in that wait
30  * channels are not owned by anyone, so there is no priority propagation.
31  * Sleep queues can also provide a timeout and can also be interrupted by
32  * signals. That said, there are several similarities between the turnstile
33  * and sleep queue implementations. (Note: turnstiles were implemented
34  * first.) For example, both use a hash table of the same size where each
35  * bucket is referred to as a "chain" that contains both a spin lock and
36  * a linked list of queues. An individual queue is located by using a hash
37  * to pick a chain, locking the chain, and then walking the chain searching
38  * for the queue. This means that a wait channel object does not need to
39  * embed it's queue head just as locks do not embed their turnstile queue
40  * head. Threads also carry around a sleep queue that they lend to the
41  * wait channel when blocking. Just as in turnstiles, the queue includes
42  * a free list of the sleep queues of other threads blocked on the same
43  * wait channel in the case of multiple waiters.
44  *
45  * Some additional functionality provided by sleep queues include the
46  * ability to set a timeout. The timeout is managed using a per-thread
47  * callout that resumes a thread if it is asleep. A thread may also
48  * catch signals while it is asleep (aka an interruptible sleep). The
49  * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally,
50  * sleep queues also provide some extra assertions. One is not allowed to
51  * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one
52  * must consistently use the same lock to synchronize with a wait channel,
53  * though this check is currently only a warning for sleep/wakeup due to
54  * pre-existing abuse of that API. The same lock must also be held when
55  * awakening threads, though that is currently only enforced for condition
56  * variables.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$BSDSUniX$");
61 
62 #include "opt_sleepqueue_profiling.h"
63 #include "opt_ddb.h"
64 #include "opt_kdtrace.h"
65 #include "opt_sched.h"
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/lock.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/sbuf.h>
75 #include <sys/sched.h>
76 #include <sys/sdt.h>
77 #include <sys/signalvar.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/sysctl.h>
80 
81 #include <vm/uma.h>
82 
83 #ifdef DDB
84 #include <ddb/ddb.h>
85 #endif
86 
87 /*
88  * Constants for the hash table of sleep queue chains. These constants are
89  * the same ones that 4BSD (and possibly earlier versions of BSD) used.
90  * Basically, we ignore the lower 8 bits of the address since most wait
91  * channel pointers are aligned and only look at the next 7 bits for the
92  * hash. SC_TABLESIZE must be a power of two for SC_MASK to work properly.
93  */
94 #define SC_TABLESIZE 128 /* Must be power of 2. */
95 #define SC_MASK (SC_TABLESIZE - 1)
96 #define SC_SHIFT 8
97 #define SC_HASH(wc) (((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
98 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)]
99 #define NR_SLEEPQS 2
100 /*
101  * There two different lists of sleep queues. Both lists are connected
102  * via the sq_hash entries. The first list is the sleep queue chain list
103  * that a sleep queue is on when it is attached to a wait channel. The
104  * second list is the free list hung off of a sleep queue that is attached
105  * to a wait channel.
106  *
107  * Each sleep queue also contains the wait channel it is attached to, the
108  * list of threads blocked on that wait channel, flags specific to the
109  * wait channel, and the lock used to synchronize with a wait channel.
110  * The flags are used to catch mismatches between the various consumers
111  * of the sleep queue API (e.g. sleep/wakeup and condition variables).
112  * The lock pointer is only used when invariants are enabled for various
113  * debugging checks.
114  *
115  * Locking key:
116  * c - sleep queue chain lock
117  */
118 struct sleepqueue {
119  TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */
120  u_int sq_blockedcnt[NR_SLEEPQS]; /* (c) N. of blocked threads. */
121  LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */
122  LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */
123  void *sq_wchan; /* (c) Wait channel. */
124  int sq_type; /* (c) Queue type. */
125 #ifdef INVARIANTS
126  struct lock_object *sq_lock; /* (c) Associated lock. */
127 #endif
128 };
129 
131  LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */
132  struct mtx sc_lock; /* Spin lock for this chain. */
133 #ifdef SLEEPQUEUE_PROFILING
134  u_int sc_depth; /* Length of sc_queues. */
135  u_int sc_max_depth; /* Max length of sc_queues. */
136 #endif
137 };
138 
139 #ifdef SLEEPQUEUE_PROFILING
140 u_int sleepq_max_depth;
141 static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
142 static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
143  "sleepq chain stats");
144 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
145  0, "maxmimum depth achieved of a single chain");
146 
147 static void sleepq_profile(const char *wmesg);
148 static int prof_enabled;
149 #endif
151 static uma_zone_t sleepq_zone;
152 
153 /*
154  * Prototypes for non-exported routines.
155  */
156 static int sleepq_catch_signals(void *wchan, int pri);
157 static int sleepq_check_signals(void);
158 static int sleepq_check_timeout(void);
159 #ifdef INVARIANTS
160 static void sleepq_dtor(void *mem, int size, void *arg);
161 #endif
162 static int sleepq_init(void *mem, int size, int flags);
163 static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
164  int pri);
165 static void sleepq_switch(void *wchan, int pri);
166 static void sleepq_timeout(void *arg);
167 
168 SDT_PROBE_DECLARE(sched, , , sleep);
169 SDT_PROBE_DECLARE(sched, , , wakeup);
170 
171 /*
172  * Early initialization of sleep queues that is called from the sleepinit()
173  * SYSINIT.
174  */
175 void
177 {
178 #ifdef SLEEPQUEUE_PROFILING
179  struct sysctl_oid *chain_oid;
180  char chain_name[10];
181 #endif
182  int i;
183 
184  for (i = 0; i < SC_TABLESIZE; i++) {
185  LIST_INIT(&sleepq_chains[i].sc_queues);
186  mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
187  MTX_SPIN | MTX_RECURSE);
188 #ifdef SLEEPQUEUE_PROFILING
189  snprintf(chain_name, sizeof(chain_name), "%d", i);
190  chain_oid = SYSCTL_ADD_NODE(NULL,
191  SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
192  chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
193  SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
194  "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
195  SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
196  "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
197  NULL);
198 #endif
199  }
200  sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
201 #ifdef INVARIANTS
202  NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
203 #else
204  NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
205 #endif
206 
207  thread0.td_sleepqueue = sleepq_alloc();
208 }
209 
210 /*
211  * Get a sleep queue for a new thread.
212  */
213 struct sleepqueue *
215 {
216 
217  return (uma_zalloc(sleepq_zone, M_WAITOK));
218 }
219 
220 /*
221  * Free a sleep queue when a thread is destroyed.
222  */
223 void
225 {
226 
227  uma_zfree(sleepq_zone, sq);
228 }
229 
230 /*
231  * Lock the sleep queue chain associated with the specified wait channel.
232  */
233 void
234 sleepq_lock(void *wchan)
235 {
236  struct sleepqueue_chain *sc;
237 
238  sc = SC_LOOKUP(wchan);
239  mtx_lock_spin(&sc->sc_lock);
240 }
241 
242 /*
243  * Look up the sleep queue associated with a given wait channel in the hash
244  * table locking the associated sleep queue chain. If no queue is found in
245  * the table, NULL is returned.
246  */
247 struct sleepqueue *
248 sleepq_lookup(void *wchan)
249 {
250  struct sleepqueue_chain *sc;
251  struct sleepqueue *sq;
252 
253  KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
254  sc = SC_LOOKUP(wchan);
255  mtx_assert(&sc->sc_lock, MA_OWNED);
256  LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
257  if (sq->sq_wchan == wchan)
258  return (sq);
259  return (NULL);
260 }
261 
262 /*
263  * Unlock the sleep queue chain associated with a given wait channel.
264  */
265 void
266 sleepq_release(void *wchan)
267 {
268  struct sleepqueue_chain *sc;
269 
270  sc = SC_LOOKUP(wchan);
271  mtx_unlock_spin(&sc->sc_lock);
272 }
273 
274 /*
275  * Places the current thread on the sleep queue for the specified wait
276  * channel. If INVARIANTS is enabled, then it associates the passed in
277  * lock with the sleepq to make sure it is held when that sleep queue is
278  * woken up.
279  */
280 void
281 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
282  int queue)
283 {
284  struct sleepqueue_chain *sc;
285  struct sleepqueue *sq;
286  struct thread *td;
287 
288  td = curthread;
289  sc = SC_LOOKUP(wchan);
290  mtx_assert(&sc->sc_lock, MA_OWNED);
291  MPASS(td->td_sleepqueue != NULL);
292  MPASS(wchan != NULL);
293  MPASS((queue >= 0) && (queue < NR_SLEEPQS));
294 
295  /* If this thread is not allowed to sleep, die a horrible death. */
296  KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
297  ("Trying sleep, but thread marked as sleeping prohibited"));
298 
299  /* Look up the sleep queue associated with the wait channel 'wchan'. */
300  sq = sleepq_lookup(wchan);
301 
302  /*
303  * If the wait channel does not already have a sleep queue, use
304  * this thread's sleep queue. Otherwise, insert the current thread
305  * into the sleep queue already in use by this wait channel.
306  */
307  if (sq == NULL) {
308 #ifdef INVARIANTS
309  int i;
310 
311  sq = td->td_sleepqueue;
312  for (i = 0; i < NR_SLEEPQS; i++) {
313  KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
314  ("thread's sleep queue %d is not empty", i));
315  KASSERT(sq->sq_blockedcnt[i] == 0,
316  ("thread's sleep queue %d count mismatches", i));
317  }
318  KASSERT(LIST_EMPTY(&sq->sq_free),
319  ("thread's sleep queue has a non-empty free list"));
320  KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
321  sq->sq_lock = lock;
322 #endif
323 #ifdef SLEEPQUEUE_PROFILING
324  sc->sc_depth++;
325  if (sc->sc_depth > sc->sc_max_depth) {
326  sc->sc_max_depth = sc->sc_depth;
327  if (sc->sc_max_depth > sleepq_max_depth)
328  sleepq_max_depth = sc->sc_max_depth;
329  }
330 #endif
331  sq = td->td_sleepqueue;
332  LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
333  sq->sq_wchan = wchan;
334  sq->sq_type = flags & SLEEPQ_TYPE;
335  } else {
336  MPASS(wchan == sq->sq_wchan);
337  MPASS(lock == sq->sq_lock);
338  MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
339  LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
340  }
341  thread_lock(td);
342  TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
343  sq->sq_blockedcnt[queue]++;
344  td->td_sleepqueue = NULL;
345  td->td_sqqueue = queue;
346  td->td_wchan = wchan;
347  td->td_wmesg = wmesg;
348  if (flags & SLEEPQ_INTERRUPTIBLE) {
349  td->td_flags |= TDF_SINTR;
350  td->td_flags &= ~TDF_SLEEPABORT;
351  }
352  thread_unlock(td);
353 }
354 
355 /*
356  * Sets a timeout that will remove the current thread from the specified
357  * sleep queue after timo ticks if the thread has not already been awakened.
358  */
359 void
360 sleepq_set_timeout(void *wchan, int timo)
361 {
362  struct sleepqueue_chain *sc;
363  struct thread *td;
364 
365  td = curthread;
366  sc = SC_LOOKUP(wchan);
367  mtx_assert(&sc->sc_lock, MA_OWNED);
368  MPASS(TD_ON_SLEEPQ(td));
369  MPASS(td->td_sleepqueue == NULL);
370  MPASS(wchan != NULL);
371  callout_reset_curcpu(&td->td_slpcallout, timo, sleepq_timeout, td);
372 }
373 
374 /*
375  * Return the number of actual sleepers for the specified queue.
376  */
377 u_int
378 sleepq_sleepcnt(void *wchan, int queue)
379 {
380  struct sleepqueue *sq;
381 
382  KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
383  MPASS((queue >= 0) && (queue < NR_SLEEPQS));
384  sq = sleepq_lookup(wchan);
385  if (sq == NULL)
386  return (0);
387  return (sq->sq_blockedcnt[queue]);
388 }
389 
390 /*
391  * Marks the pending sleep of the current thread as interruptible and
392  * makes an initial check for pending signals before putting a thread
393  * to sleep. Enters and exits with the thread lock held. Thread lock
394  * may have transitioned from the sleepq lock to a run lock.
395  */
396 static int
397 sleepq_catch_signals(void *wchan, int pri)
398 {
399  struct sleepqueue_chain *sc;
400  struct sleepqueue *sq;
401  struct thread *td;
402  struct proc *p;
403  struct sigacts *ps;
404  int sig, ret, stop_allowed;
405 
406  td = curthread;
407  p = curproc;
408  sc = SC_LOOKUP(wchan);
409  mtx_assert(&sc->sc_lock, MA_OWNED);
410  MPASS(wchan != NULL);
411  if ((td->td_pflags & TDP_WAKEUP) != 0) {
412  td->td_pflags &= ~TDP_WAKEUP;
413  ret = EINTR;
414  thread_lock(td);
415  goto out;
416  }
417 
418  /*
419  * See if there are any pending signals for this thread. If not
420  * we can switch immediately. Otherwise do the signal processing
421  * directly.
422  */
423  thread_lock(td);
424  if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
425  sleepq_switch(wchan, pri);
426  return (0);
427  }
428  stop_allowed = (td->td_flags & TDF_SBDRY) ? SIG_STOP_NOT_ALLOWED :
429  SIG_STOP_ALLOWED;
430  thread_unlock(td);
431  mtx_unlock_spin(&sc->sc_lock);
432  CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
433  (void *)td, (long)p->p_pid, td->td_name);
434  PROC_LOCK(p);
435  ps = p->p_sigacts;
436  mtx_lock(&ps->ps_mtx);
437  sig = cursig(td, stop_allowed);
438  if (sig == 0) {
439  mtx_unlock(&ps->ps_mtx);
440  ret = thread_suspend_check(1);
441  MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
442  } else {
443  if (SIGISMEMBER(ps->ps_sigintr, sig))
444  ret = EINTR;
445  else
446  ret = ERESTART;
447  mtx_unlock(&ps->ps_mtx);
448  }
449  /*
450  * Lock the per-process spinlock prior to dropping the PROC_LOCK
451  * to avoid a signal delivery race. PROC_LOCK, PROC_SLOCK, and
452  * thread_lock() are currently held in tdsendsignal().
453  */
454  PROC_SLOCK(p);
455  mtx_lock_spin(&sc->sc_lock);
456  PROC_UNLOCK(p);
457  thread_lock(td);
458  PROC_SUNLOCK(p);
459  if (ret == 0) {
460  sleepq_switch(wchan, pri);
461  return (0);
462  }
463 out:
464  /*
465  * There were pending signals and this thread is still
466  * on the sleep queue, remove it from the sleep queue.
467  */
468  if (TD_ON_SLEEPQ(td)) {
469  sq = sleepq_lookup(wchan);
470  if (sleepq_resume_thread(sq, td, 0)) {
471 #ifdef INVARIANTS
472  /*
473  * This thread hasn't gone to sleep yet, so it
474  * should not be swapped out.
475  */
476  panic("not waking up swapper");
477 #endif
478  }
479  }
480  mtx_unlock_spin(&sc->sc_lock);
481  MPASS(td->td_lock != &sc->sc_lock);
482  return (ret);
483 }
484 
485 /*
486  * Switches to another thread if we are still asleep on a sleep queue.
487  * Returns with thread lock.
488  */
489 static void
490 sleepq_switch(void *wchan, int pri)
491 {
492  struct sleepqueue_chain *sc;
493  struct sleepqueue *sq;
494  struct thread *td;
495 
496  td = curthread;
497  sc = SC_LOOKUP(wchan);
498  mtx_assert(&sc->sc_lock, MA_OWNED);
499  THREAD_LOCK_ASSERT(td, MA_OWNED);
500 
501  /*
502  * If we have a sleep queue, then we've already been woken up, so
503  * just return.
504  */
505  if (td->td_sleepqueue != NULL) {
506  mtx_unlock_spin(&sc->sc_lock);
507  return;
508  }
509 
510  /*
511  * If TDF_TIMEOUT is set, then our sleep has been timed out
512  * already but we are still on the sleep queue, so dequeue the
513  * thread and return.
514  */
515  if (td->td_flags & TDF_TIMEOUT) {
516  MPASS(TD_ON_SLEEPQ(td));
517  sq = sleepq_lookup(wchan);
518  if (sleepq_resume_thread(sq, td, 0)) {
519 #ifdef INVARIANTS
520  /*
521  * This thread hasn't gone to sleep yet, so it
522  * should not be swapped out.
523  */
524  panic("not waking up swapper");
525 #endif
526  }
527  mtx_unlock_spin(&sc->sc_lock);
528  return;
529  }
530 #ifdef SLEEPQUEUE_PROFILING
531  if (prof_enabled)
532  sleepq_profile(td->td_wmesg);
533 #endif
534  MPASS(td->td_sleepqueue == NULL);
535  sched_sleep(td, pri);
536  thread_lock_set(td, &sc->sc_lock);
537  SDT_PROBE0(sched, , , sleep);
538  TD_SET_SLEEPING(td);
539  mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
540  KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
541  CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
542  (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
543 }
544 
545 /*
546  * Check to see if we timed out.
547  */
548 static int
550 {
551  struct thread *td;
552 
553  td = curthread;
554  THREAD_LOCK_ASSERT(td, MA_OWNED);
555 
556  /*
557  * If TDF_TIMEOUT is set, we timed out.
558  */
559  if (td->td_flags & TDF_TIMEOUT) {
560  td->td_flags &= ~TDF_TIMEOUT;
561  return (EWOULDBLOCK);
562  }
563 
564  /*
565  * If TDF_TIMOFAIL is set, the timeout ran after we had
566  * already been woken up.
567  */
568  if (td->td_flags & TDF_TIMOFAIL)
569  td->td_flags &= ~TDF_TIMOFAIL;
570 
571  /*
572  * If callout_stop() fails, then the timeout is running on
573  * another CPU, so synchronize with it to avoid having it
574  * accidentally wake up a subsequent sleep.
575  */
576  else if (callout_stop(&td->td_slpcallout) == 0) {
577  td->td_flags |= TDF_TIMEOUT;
578  TD_SET_SLEEPING(td);
579  mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
580  }
581  return (0);
582 }
583 
584 /*
585  * Check to see if we were awoken by a signal.
586  */
587 static int
589 {
590  struct thread *td;
591 
592  td = curthread;
593  THREAD_LOCK_ASSERT(td, MA_OWNED);
594 
595  /* We are no longer in an interruptible sleep. */
596  if (td->td_flags & TDF_SINTR)
597  td->td_flags &= ~TDF_SINTR;
598 
599  if (td->td_flags & TDF_SLEEPABORT) {
600  td->td_flags &= ~TDF_SLEEPABORT;
601  return (td->td_intrval);
602  }
603 
604  return (0);
605 }
606 
607 /*
608  * Block the current thread until it is awakened from its sleep queue.
609  */
610 void
611 sleepq_wait(void *wchan, int pri)
612 {
613  struct thread *td;
614 
615  td = curthread;
616  MPASS(!(td->td_flags & TDF_SINTR));
617  thread_lock(td);
618  sleepq_switch(wchan, pri);
619  thread_unlock(td);
620 }
621 
622 /*
623  * Block the current thread until it is awakened from its sleep queue
624  * or it is interrupted by a signal.
625  */
626 int
627 sleepq_wait_sig(void *wchan, int pri)
628 {
629  int rcatch;
630  int rval;
631 
632  rcatch = sleepq_catch_signals(wchan, pri);
633  rval = sleepq_check_signals();
634  thread_unlock(curthread);
635  if (rcatch)
636  return (rcatch);
637  return (rval);
638 }
639 
640 /*
641  * Block the current thread until it is awakened from its sleep queue
642  * or it times out while waiting.
643  */
644 int
645 sleepq_timedwait(void *wchan, int pri)
646 {
647  struct thread *td;
648  int rval;
649 
650  td = curthread;
651  MPASS(!(td->td_flags & TDF_SINTR));
652  thread_lock(td);
653  sleepq_switch(wchan, pri);
654  rval = sleepq_check_timeout();
655  thread_unlock(td);
656 
657  return (rval);
658 }
659 
660 /*
661  * Block the current thread until it is awakened from its sleep queue,
662  * it is interrupted by a signal, or it times out waiting to be awakened.
663  */
664 int
665 sleepq_timedwait_sig(void *wchan, int pri)
666 {
667  int rcatch, rvalt, rvals;
668 
669  rcatch = sleepq_catch_signals(wchan, pri);
670  rvalt = sleepq_check_timeout();
671  rvals = sleepq_check_signals();
672  thread_unlock(curthread);
673  if (rcatch)
674  return (rcatch);
675  if (rvals)
676  return (rvals);
677  return (rvalt);
678 }
679 
680 /*
681  * Returns the type of sleepqueue given a waitchannel.
682  */
683 int
684 sleepq_type(void *wchan)
685 {
686  struct sleepqueue *sq;
687  int type;
688 
689  MPASS(wchan != NULL);
690 
691  sleepq_lock(wchan);
692  sq = sleepq_lookup(wchan);
693  if (sq == NULL) {
694  sleepq_release(wchan);
695  return (-1);
696  }
697  type = sq->sq_type;
698  sleepq_release(wchan);
699  return (type);
700 }
701 
702 /*
703  * Removes a thread from a sleep queue and makes it
704  * runnable.
705  */
706 static int
707 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
708 {
709  struct sleepqueue_chain *sc;
710 
711  MPASS(td != NULL);
712  MPASS(sq->sq_wchan != NULL);
713  MPASS(td->td_wchan == sq->sq_wchan);
714  MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
715  THREAD_LOCK_ASSERT(td, MA_OWNED);
716  sc = SC_LOOKUP(sq->sq_wchan);
717  mtx_assert(&sc->sc_lock, MA_OWNED);
718 
719  SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
720 
721  /* Remove the thread from the queue. */
722  sq->sq_blockedcnt[td->td_sqqueue]--;
723  TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
724 
725  /*
726  * Get a sleep queue for this thread. If this is the last waiter,
727  * use the queue itself and take it out of the chain, otherwise,
728  * remove a queue from the free list.
729  */
730  if (LIST_EMPTY(&sq->sq_free)) {
731  td->td_sleepqueue = sq;
732 #ifdef INVARIANTS
733  sq->sq_wchan = NULL;
734 #endif
735 #ifdef SLEEPQUEUE_PROFILING
736  sc->sc_depth--;
737 #endif
738  } else
739  td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
740  LIST_REMOVE(td->td_sleepqueue, sq_hash);
741 
742  td->td_wmesg = NULL;
743  td->td_wchan = NULL;
744  td->td_flags &= ~TDF_SINTR;
745 
746  CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
747  (void *)td, (long)td->td_proc->p_pid, td->td_name);
748 
749  /* Adjust priority if requested. */
750  MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
751  if (pri != 0 && td->td_priority > pri &&
752  PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
753  sched_prio(td, pri);
754 
755  /*
756  * Note that thread td might not be sleeping if it is running
757  * sleepq_catch_signals() on another CPU or is blocked on its
758  * proc lock to check signals. There's no need to mark the
759  * thread runnable in that case.
760  */
761  if (TD_IS_SLEEPING(td)) {
762  TD_CLR_SLEEPING(td);
763  return (setrunnable(td));
764  }
765  return (0);
766 }
767 
768 #ifdef INVARIANTS
769 /*
770  * UMA zone item deallocator.
771  */
772 static void
773 sleepq_dtor(void *mem, int size, void *arg)
774 {
775  struct sleepqueue *sq;
776  int i;
777 
778  sq = mem;
779  for (i = 0; i < NR_SLEEPQS; i++) {
780  MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
781  MPASS(sq->sq_blockedcnt[i] == 0);
782  }
783 }
784 #endif
785 
786 /*
787  * UMA zone item initializer.
788  */
789 static int
790 sleepq_init(void *mem, int size, int flags)
791 {
792  struct sleepqueue *sq;
793  int i;
794 
795  bzero(mem, size);
796  sq = mem;
797  for (i = 0; i < NR_SLEEPQS; i++) {
798  TAILQ_INIT(&sq->sq_blocked[i]);
799  sq->sq_blockedcnt[i] = 0;
800  }
801  LIST_INIT(&sq->sq_free);
802  return (0);
803 }
804 
805 /*
806  * Find the highest priority thread sleeping on a wait channel and resume it.
807  */
808 int
809 sleepq_signal(void *wchan, int flags, int pri, int queue)
810 {
811  struct sleepqueue *sq;
812  struct thread *td, *besttd;
813  int wakeup_swapper;
814 
815  CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
816  KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
817  MPASS((queue >= 0) && (queue < NR_SLEEPQS));
818  sq = sleepq_lookup(wchan);
819  if (sq == NULL)
820  return (0);
821  KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
822  ("%s: mismatch between sleep/wakeup and cv_*", __func__));
823 
824  /*
825  * Find the highest priority thread on the queue. If there is a
826  * tie, use the thread that first appears in the queue as it has
827  * been sleeping the longest since threads are always added to
828  * the tail of sleep queues.
829  */
830  besttd = NULL;
831  TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
832  if (besttd == NULL || td->td_priority < besttd->td_priority)
833  besttd = td;
834  }
835  MPASS(besttd != NULL);
836  thread_lock(besttd);
837  wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
838  thread_unlock(besttd);
839  return (wakeup_swapper);
840 }
841 
842 /*
843  * Resume all threads sleeping on a specified wait channel.
844  */
845 int
846 sleepq_broadcast(void *wchan, int flags, int pri, int queue)
847 {
848  struct sleepqueue *sq;
849  struct thread *td, *tdn;
850  int wakeup_swapper;
851 
852  CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
853  KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
854  MPASS((queue >= 0) && (queue < NR_SLEEPQS));
855  sq = sleepq_lookup(wchan);
856  if (sq == NULL)
857  return (0);
858  KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
859  ("%s: mismatch between sleep/wakeup and cv_*", __func__));
860 
861  /* Resume all blocked threads on the sleep queue. */
862  wakeup_swapper = 0;
863  TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
864  thread_lock(td);
865  if (sleepq_resume_thread(sq, td, pri))
866  wakeup_swapper = 1;
867  thread_unlock(td);
868  }
869  return (wakeup_swapper);
870 }
871 
872 /*
873  * Time sleeping threads out. When the timeout expires, the thread is
874  * removed from the sleep queue and made runnable if it is still asleep.
875  */
876 static void
877 sleepq_timeout(void *arg)
878 {
879  struct sleepqueue_chain *sc;
880  struct sleepqueue *sq;
881  struct thread *td;
882  void *wchan;
883  int wakeup_swapper;
884 
885  td = arg;
886  wakeup_swapper = 0;
887  CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
888  (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
889 
890  /*
891  * First, see if the thread is asleep and get the wait channel if
892  * it is.
893  */
894  thread_lock(td);
895  if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
896  wchan = td->td_wchan;
897  sc = SC_LOOKUP(wchan);
898  THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
899  sq = sleepq_lookup(wchan);
900  MPASS(sq != NULL);
901  td->td_flags |= TDF_TIMEOUT;
902  wakeup_swapper = sleepq_resume_thread(sq, td, 0);
903  thread_unlock(td);
904  if (wakeup_swapper)
905  kick_proc0();
906  return;
907  }
908 
909  /*
910  * If the thread is on the SLEEPQ but isn't sleeping yet, it
911  * can either be on another CPU in between sleepq_add() and
912  * one of the sleepq_*wait*() routines or it can be in
913  * sleepq_catch_signals().
914  */
915  if (TD_ON_SLEEPQ(td)) {
916  td->td_flags |= TDF_TIMEOUT;
917  thread_unlock(td);
918  return;
919  }
920 
921  /*
922  * Now check for the edge cases. First, if TDF_TIMEOUT is set,
923  * then the other thread has already yielded to us, so clear
924  * the flag and resume it. If TDF_TIMEOUT is not set, then the
925  * we know that the other thread is not on a sleep queue, but it
926  * hasn't resumed execution yet. In that case, set TDF_TIMOFAIL
927  * to let it know that the timeout has already run and doesn't
928  * need to be canceled.
929  */
930  if (td->td_flags & TDF_TIMEOUT) {
931  MPASS(TD_IS_SLEEPING(td));
932  td->td_flags &= ~TDF_TIMEOUT;
933  TD_CLR_SLEEPING(td);
934  wakeup_swapper = setrunnable(td);
935  } else
936  td->td_flags |= TDF_TIMOFAIL;
937  thread_unlock(td);
938  if (wakeup_swapper)
939  kick_proc0();
940 }
941 
942 /*
943  * Resumes a specific thread from the sleep queue associated with a specific
944  * wait channel if it is on that queue.
945  */
946 void
947 sleepq_remove(struct thread *td, void *wchan)
948 {
949  struct sleepqueue *sq;
950  int wakeup_swapper;
951 
952  /*
953  * Look up the sleep queue for this wait channel, then re-check
954  * that the thread is asleep on that channel, if it is not, then
955  * bail.
956  */
957  MPASS(wchan != NULL);
958  sleepq_lock(wchan);
959  sq = sleepq_lookup(wchan);
960  /*
961  * We can not lock the thread here as it may be sleeping on a
962  * different sleepq. However, holding the sleepq lock for this
963  * wchan can guarantee that we do not miss a wakeup for this
964  * channel. The asserts below will catch any false positives.
965  */
966  if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
967  sleepq_release(wchan);
968  return;
969  }
970  /* Thread is asleep on sleep queue sq, so wake it up. */
971  thread_lock(td);
972  MPASS(sq != NULL);
973  MPASS(td->td_wchan == wchan);
974  wakeup_swapper = sleepq_resume_thread(sq, td, 0);
975  thread_unlock(td);
976  sleepq_release(wchan);
977  if (wakeup_swapper)
978  kick_proc0();
979 }
980 
981 /*
982  * Abort a thread as if an interrupt had occurred. Only abort
983  * interruptible waits (unfortunately it isn't safe to abort others).
984  */
985 int
986 sleepq_abort(struct thread *td, int intrval)
987 {
988  struct sleepqueue *sq;
989  void *wchan;
990 
991  THREAD_LOCK_ASSERT(td, MA_OWNED);
992  MPASS(TD_ON_SLEEPQ(td));
993  MPASS(td->td_flags & TDF_SINTR);
994  MPASS(intrval == EINTR || intrval == ERESTART);
995 
996  /*
997  * If the TDF_TIMEOUT flag is set, just leave. A
998  * timeout is scheduled anyhow.
999  */
1000  if (td->td_flags & TDF_TIMEOUT)
1001  return (0);
1002 
1003  CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1004  (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1005  td->td_intrval = intrval;
1006  td->td_flags |= TDF_SLEEPABORT;
1007  /*
1008  * If the thread has not slept yet it will find the signal in
1009  * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise
1010  * we have to do it here.
1011  */
1012  if (!TD_IS_SLEEPING(td))
1013  return (0);
1014  wchan = td->td_wchan;
1015  MPASS(wchan != NULL);
1016  sq = sleepq_lookup(wchan);
1017  MPASS(sq != NULL);
1018 
1019  /* Thread is asleep on sleep queue sq, so wake it up. */
1020  return (sleepq_resume_thread(sq, td, 0));
1021 }
1022 
1023 #ifdef SLEEPQUEUE_PROFILING
1024 #define SLEEPQ_PROF_LOCATIONS 1024
1025 #define SLEEPQ_SBUFSIZE 512
1026 struct sleepq_prof {
1027  LIST_ENTRY(sleepq_prof) sp_link;
1028  const char *sp_wmesg;
1029  long sp_count;
1030 };
1031 
1032 LIST_HEAD(sqphead, sleepq_prof);
1033 
1034 struct sqphead sleepq_prof_free;
1035 struct sqphead sleepq_hash[SC_TABLESIZE];
1036 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1037 static struct mtx sleepq_prof_lock;
1038 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1039 
1040 static void
1041 sleepq_profile(const char *wmesg)
1042 {
1043  struct sleepq_prof *sp;
1044 
1045  mtx_lock_spin(&sleepq_prof_lock);
1046  if (prof_enabled == 0)
1047  goto unlock;
1048  LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1049  if (sp->sp_wmesg == wmesg)
1050  goto done;
1051  sp = LIST_FIRST(&sleepq_prof_free);
1052  if (sp == NULL)
1053  goto unlock;
1054  sp->sp_wmesg = wmesg;
1055  LIST_REMOVE(sp, sp_link);
1056  LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1057 done:
1058  sp->sp_count++;
1059 unlock:
1060  mtx_unlock_spin(&sleepq_prof_lock);
1061  return;
1062 }
1063 
1064 static void
1065 sleepq_prof_reset(void)
1066 {
1067  struct sleepq_prof *sp;
1068  int enabled;
1069  int i;
1070 
1071  mtx_lock_spin(&sleepq_prof_lock);
1072  enabled = prof_enabled;
1073  prof_enabled = 0;
1074  for (i = 0; i < SC_TABLESIZE; i++)
1075  LIST_INIT(&sleepq_hash[i]);
1076  LIST_INIT(&sleepq_prof_free);
1077  for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1078  sp = &sleepq_profent[i];
1079  sp->sp_wmesg = NULL;
1080  sp->sp_count = 0;
1081  LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1082  }
1083  prof_enabled = enabled;
1084  mtx_unlock_spin(&sleepq_prof_lock);
1085 }
1086 
1087 static int
1088 enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1089 {
1090  int error, v;
1091 
1092  v = prof_enabled;
1093  error = sysctl_handle_int(oidp, &v, v, req);
1094  if (error)
1095  return (error);
1096  if (req->newptr == NULL)
1097  return (error);
1098  if (v == prof_enabled)
1099  return (0);
1100  if (v == 1)
1101  sleepq_prof_reset();
1102  mtx_lock_spin(&sleepq_prof_lock);
1103  prof_enabled = !!v;
1104  mtx_unlock_spin(&sleepq_prof_lock);
1105 
1106  return (0);
1107 }
1108 
1109 static int
1110 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1111 {
1112  int error, v;
1113 
1114  v = 0;
1115  error = sysctl_handle_int(oidp, &v, 0, req);
1116  if (error)
1117  return (error);
1118  if (req->newptr == NULL)
1119  return (error);
1120  if (v == 0)
1121  return (0);
1122  sleepq_prof_reset();
1123 
1124  return (0);
1125 }
1126 
1127 static int
1128 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1129 {
1130  struct sleepq_prof *sp;
1131  struct sbuf *sb;
1132  int enabled;
1133  int error;
1134  int i;
1135 
1136  error = sysctl_wire_old_buffer(req, 0);
1137  if (error != 0)
1138  return (error);
1139  sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1140  sbuf_printf(sb, "\nwmesg\tcount\n");
1141  enabled = prof_enabled;
1142  mtx_lock_spin(&sleepq_prof_lock);
1143  prof_enabled = 0;
1144  mtx_unlock_spin(&sleepq_prof_lock);
1145  for (i = 0; i < SC_TABLESIZE; i++) {
1146  LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1147  sbuf_printf(sb, "%s\t%ld\n",
1148  sp->sp_wmesg, sp->sp_count);
1149  }
1150  }
1151  mtx_lock_spin(&sleepq_prof_lock);
1152  prof_enabled = enabled;
1153  mtx_unlock_spin(&sleepq_prof_lock);
1154 
1155  error = sbuf_finish(sb);
1156  sbuf_delete(sb);
1157  return (error);
1158 }
1159 
1160 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1161  NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1162 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1163  NULL, 0, reset_sleepq_prof_stats, "I",
1164  "Reset sleepqueue profiling statistics");
1165 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1166  NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1167 #endif
1168 
1169 #ifdef DDB
1170 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1171 {
1172  struct sleepqueue_chain *sc;
1173  struct sleepqueue *sq;
1174 #ifdef INVARIANTS
1175  struct lock_object *lock;
1176 #endif
1177  struct thread *td;
1178  void *wchan;
1179  int i;
1180 
1181  if (!have_addr)
1182  return;
1183 
1184  /*
1185  * First, see if there is an active sleep queue for the wait channel
1186  * indicated by the address.
1187  */
1188  wchan = (void *)addr;
1189  sc = SC_LOOKUP(wchan);
1190  LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1191  if (sq->sq_wchan == wchan)
1192  goto found;
1193 
1194  /*
1195  * Second, see if there is an active sleep queue at the address
1196  * indicated.
1197  */
1198  for (i = 0; i < SC_TABLESIZE; i++)
1199  LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1200  if (sq == (struct sleepqueue *)addr)
1201  goto found;
1202  }
1203 
1204  db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1205  return;
1206 found:
1207  db_printf("Wait channel: %p\n", sq->sq_wchan);
1208  db_printf("Queue type: %d\n", sq->sq_type);
1209 #ifdef INVARIANTS
1210  if (sq->sq_lock) {
1211  lock = sq->sq_lock;
1212  db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1213  LOCK_CLASS(lock)->lc_name, lock->lo_name);
1214  }
1215 #endif
1216  db_printf("Blocked threads:\n");
1217  for (i = 0; i < NR_SLEEPQS; i++) {
1218  db_printf("\nQueue[%d]:\n", i);
1219  if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1220  db_printf("\tempty\n");
1221  else
1222  TAILQ_FOREACH(td, &sq->sq_blocked[0],
1223  td_slpq) {
1224  db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1225  td->td_tid, td->td_proc->p_pid,
1226  td->td_name);
1227  }
1228  db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1229  }
1230 }
1231 
1232 /* Alias 'show sleepqueue' to 'show sleepq'. */
1233 DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1234 #endif
struct sleepqueue * sleepq_lookup(void *wchan)
void sleepq_release(void *wchan)
static int sleepq_check_timeout(void)
void sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags, int queue)
#define SC_TABLESIZE
void sched_prio(struct thread *td, u_char prio)
Definition: sched_4bsd.c:897
MTX_SYSINIT(et_eventtimers_init,&et_eventtimers_mtx,"et_mtx", MTX_DEF)
__FBSDID("$BSDSUniX$")
int snprintf(char *str, size_t size, const char *format,...)
Definition: subr_prf.c:509
static SYSCTL_NODE(_debug, OID_AUTO, cpufreq, CTLFLAG_RD, NULL,"cpufreq debugging")
static LIST_HEAD(alq)
Definition: kern_alq.c:97
static void sleepq_switch(void *wchan, int pri)
int sleepq_timedwait_sig(void *wchan, int pri)
void panic(const char *fmt,...)
TAILQ_HEAD(note_info_list, note_info)
int sleepq_abort(struct thread *td, int intrval)
#define SC_LOOKUP(wc)
static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]
SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RW,&idletick, 0,"Run periodic events when idle")
void mi_switch(int flags, struct thread *newtd)
Definition: kern_synch.c:422
static void sleepq_timeout(void *arg)
void sleepq_remove(struct thread *td, void *wchan)
int * type
Definition: cpufreq_if.m:98
void sleepq_set_timeout(void *wchan, int timo)
int sleepq_wait_sig(void *wchan, int pri)
void sleepq_lock(void *wchan)
void sleepq_free(struct sleepqueue *sq)
static int sleepq_check_signals(void)
void thread_lock_set(struct thread *td, struct mtx *new)
Definition: kern_mutex.c:693
SDT_PROBE_DECLARE(sched,,, sleep)
void sleepq_wait(void *wchan, int pri)
int setrunnable(struct thread *td)
Definition: kern_synch.c:506
int sbuf_printf(struct sbuf *s, const char *fmt,...)
Definition: subr_sbuf.c:632
int cursig(struct thread *td, int stop_allowed)
Definition: kern_sig.c:559
int sleepq_broadcast(void *wchan, int flags, int pri, int queue)
static int sleepq_catch_signals(void *wchan, int pri)
int sysctl_handle_int(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:986
static int sleepq_init(void *mem, int size, int flags)
int sleepq_signal(void *wchan, int flags, int pri, int queue)
SYSCTL_PROC(_kern, OID_AUTO, acct_chkfreq, CTLTYPE_INT|CTLFLAG_RW,&acctchkfreq, 0, sysctl_acct_chkfreq,"I","frequency for checking the free space")
static int sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
void sbuf_delete(struct sbuf *s)
Definition: subr_sbuf.c:753
int sleepq_type(void *wchan)
int sysctl_wire_old_buffer(struct sysctl_req *req, size_t len)
Definition: kern_sysctl.c:1364
void mtx_init(struct mtx *m, const char *name, const char *type, int opts)
Definition: kern_mutex.c:837
void init_sleepqueues(void)
void wakeup(void *ident)
Definition: kern_synch.c:378
struct sleepqueue * sleepq_alloc(void)
static uma_zone_t sleepq_zone
int sbuf_finish(struct sbuf *s)
Definition: subr_sbuf.c:694
#define NR_SLEEPQS
#define SC_HASH(wc)
int thread_suspend_check(int return_instead)
Definition: kern_thread.c:767
struct sbuf * sbuf_new_for_sysctl(struct sbuf *s, char *buf, int length, struct sysctl_req *req)
Definition: kern_sysctl.c:1676
u_int sleepq_sleepcnt(void *wchan, int queue)
int sleepq_timedwait(void *wchan, int pri)
void sched_sleep(struct thread *td, int pri)
Definition: sched_4bsd.c:948