FreeBSD kernel kern code
kern_synch.c
Go to the documentation of this file.
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  * The Regents of the University of California. All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  * notice, this list of conditions and the following disclaimer in the
17  * documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  * may be used to endorse or promote products derived from this software
20  * without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$BSDSUniX$");
39 
40 #include "opt_kdtrace.h"
41 #include "opt_ktrace.h"
42 #include "opt_sched.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/condvar.h>
47 #include <sys/kdb.h>
48 #include <sys/kernel.h>
49 #include <sys/ktr.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/sched.h>
55 #include <sys/sdt.h>
56 #include <sys/signalvar.h>
57 #include <sys/sleepqueue.h>
58 #include <sys/smp.h>
59 #include <sys/sx.h>
60 #include <sys/sysctl.h>
61 #include <sys/sysproto.h>
62 #include <sys/vmmeter.h>
63 #ifdef KTRACE
64 #include <sys/uio.h>
65 #include <sys/ktrace.h>
66 #endif
67 
68 #include <machine/cpu.h>
69 
70 #ifdef XEN
71 #include <vm/vm.h>
72 #include <vm/vm_param.h>
73 #include <vm/pmap.h>
74 #endif
75 
76 #define KTDSTATE(td) \
77  (((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep" : \
78  ((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" : \
79  ((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" : \
80  ((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" : \
81  ((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
82 
83 static void synch_setup(void *dummy);
84 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
85  NULL);
86 
88 static int pause_wchan;
89 
90 static struct callout loadav_callout;
91 
92 struct loadavg averunnable =
93  { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
94 /*
95  * Constants for averages over 1, 5, and 15 minutes
96  * when sampling at 5 second intervals.
97  */
98 static fixpt_t cexp[3] = {
99  0.9200444146293232 * FSCALE, /* exp(-1/12) */
100  0.9834714538216174 * FSCALE, /* exp(-1/60) */
101  0.9944598480048967 * FSCALE, /* exp(-1/180) */
102 };
103 
104 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
105 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE, "");
106 
107 static void loadav(void *arg);
108 
109 SDT_PROVIDER_DECLARE(sched);
110 SDT_PROBE_DEFINE(sched, , , preempt);
111 
112 /*
113  * These probes reference Solaris features that are not implemented in FreeBSD.
114  * Create the probes anyway for compatibility with existing D scripts; they'll
115  * just never fire.
116  */
117 SDT_PROBE_DEFINE(sched, , , cpucaps__sleep);
118 SDT_PROBE_DEFINE(sched, , , cpucaps__wakeup);
119 SDT_PROBE_DEFINE(sched, , , schedctl__nopreempt);
120 SDT_PROBE_DEFINE(sched, , , schedctl__preempt);
121 SDT_PROBE_DEFINE(sched, , , schedctl__yield);
122 
123 void
125 {
126 
127  hogticks = (hz / 10) * 2; /* Default only. */
129 }
130 
131 /*
132  * General sleep call. Suspends the current thread until a wakeup is
133  * performed on the specified identifier. The thread will then be made
134  * runnable with the specified priority. Sleeps at most timo/hz seconds
135  * (0 means no timeout). If pri includes PCATCH flag, signals are checked
136  * before and after sleeping, else signals are not checked. Returns 0 if
137  * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
138  * signal needs to be delivered, ERESTART is returned if the current system
139  * call should be restarted if possible, and EINTR is returned if the system
140  * call should be interrupted by the signal (return EINTR).
141  *
142  * The lock argument is unlocked before the caller is suspended, and
143  * re-locked before _sleep() returns. If priority includes the PDROP
144  * flag the lock is not re-locked before returning.
145  */
146 int
147 _sleep(void *ident, struct lock_object *lock, int priority,
148  const char *wmesg, int timo)
149 {
150  struct thread *td;
151  struct proc *p;
152  struct lock_class *class;
153  int catch, flags, lock_state, pri, rval;
154  WITNESS_SAVE_DECL(lock_witness);
155 
156  td = curthread;
157  p = td->td_proc;
158 #ifdef KTRACE
159  if (KTRPOINT(td, KTR_CSW))
160  ktrcsw(1, 0, wmesg);
161 #endif
162  WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
163  "Sleeping on \"%s\"", wmesg);
164  KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL,
165  ("sleeping without a lock"));
166  KASSERT(p != NULL, ("msleep1"));
167  KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
168  if (priority & PDROP)
169  KASSERT(lock != NULL && lock != &Giant.lock_object,
170  ("PDROP requires a non-Giant lock"));
171  if (lock != NULL)
172  class = LOCK_CLASS(lock);
173  else
174  class = NULL;
175 
176  if (cold || SCHEDULER_STOPPED()) {
177  /*
178  * During autoconfiguration, just return;
179  * don't run any other threads or panic below,
180  * in case this is the idle thread and already asleep.
181  * XXX: this used to do "s = splhigh(); splx(safepri);
182  * splx(s);" to give interrupts a chance, but there is
183  * no way to give interrupts a chance now.
184  */
185  if (lock != NULL && priority & PDROP)
186  class->lc_unlock(lock);
187  return (0);
188  }
189  catch = priority & PCATCH;
190  pri = priority & PRIMASK;
191 
192  /*
193  * If we are already on a sleep queue, then remove us from that
194  * sleep queue first. We have to do this to handle recursive
195  * sleeps.
196  */
197  if (TD_ON_SLEEPQ(td))
198  sleepq_remove(td, td->td_wchan);
199 
200  if (ident == &pause_wchan)
201  flags = SLEEPQ_PAUSE;
202  else
203  flags = SLEEPQ_SLEEP;
204  if (catch)
205  flags |= SLEEPQ_INTERRUPTIBLE;
206  if (priority & PBDRY)
207  flags |= SLEEPQ_STOP_ON_BDRY;
208 
209  sleepq_lock(ident);
210  CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
211  td->td_tid, p->p_pid, td->td_name, wmesg, ident);
212 
213  if (lock == &Giant.lock_object)
214  mtx_assert(&Giant, MA_OWNED);
215  DROP_GIANT();
216  if (lock != NULL && lock != &Giant.lock_object &&
217  !(class->lc_flags & LC_SLEEPABLE)) {
218  WITNESS_SAVE(lock, lock_witness);
219  lock_state = class->lc_unlock(lock);
220  } else
221  /* GCC needs to follow the Yellow Brick Road */
222  lock_state = -1;
223 
224  /*
225  * We put ourselves on the sleep queue and start our timeout
226  * before calling thread_suspend_check, as we could stop there,
227  * and a wakeup or a SIGCONT (or both) could occur while we were
228  * stopped without resuming us. Thus, we must be ready for sleep
229  * when cursig() is called. If the wakeup happens while we're
230  * stopped, then td will no longer be on a sleep queue upon
231  * return from cursig().
232  */
233  sleepq_add(ident, lock, wmesg, flags, 0);
234  if (timo)
235  sleepq_set_timeout(ident, timo);
236  if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
237  sleepq_release(ident);
238  WITNESS_SAVE(lock, lock_witness);
239  lock_state = class->lc_unlock(lock);
240  sleepq_lock(ident);
241  }
242  if (timo && catch)
243  rval = sleepq_timedwait_sig(ident, pri);
244  else if (timo)
245  rval = sleepq_timedwait(ident, pri);
246  else if (catch)
247  rval = sleepq_wait_sig(ident, pri);
248  else {
249  sleepq_wait(ident, pri);
250  rval = 0;
251  }
252 #ifdef KTRACE
253  if (KTRPOINT(td, KTR_CSW))
254  ktrcsw(0, 0, wmesg);
255 #endif
256  PICKUP_GIANT();
257  if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
258  class->lc_lock(lock, lock_state);
259  WITNESS_RESTORE(lock, lock_witness);
260  }
261  return (rval);
262 }
263 
264 int
265 msleep_spin(void *ident, struct mtx *mtx, const char *wmesg, int timo)
266 {
267  struct thread *td;
268  struct proc *p;
269  int rval;
270  WITNESS_SAVE_DECL(mtx);
271 
272  td = curthread;
273  p = td->td_proc;
274  KASSERT(mtx != NULL, ("sleeping without a mutex"));
275  KASSERT(p != NULL, ("msleep1"));
276  KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
277 
278  if (cold || SCHEDULER_STOPPED()) {
279  /*
280  * During autoconfiguration, just return;
281  * don't run any other threads or panic below,
282  * in case this is the idle thread and already asleep.
283  * XXX: this used to do "s = splhigh(); splx(safepri);
284  * splx(s);" to give interrupts a chance, but there is
285  * no way to give interrupts a chance now.
286  */
287  return (0);
288  }
289 
290  sleepq_lock(ident);
291  CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
292  td->td_tid, p->p_pid, td->td_name, wmesg, ident);
293 
294  DROP_GIANT();
295  mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
296  WITNESS_SAVE(&mtx->lock_object, mtx);
297  mtx_unlock_spin(mtx);
298 
299  /*
300  * We put ourselves on the sleep queue and start our timeout.
301  */
302  sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
303  if (timo)
304  sleepq_set_timeout(ident, timo);
305 
306  /*
307  * Can't call ktrace with any spin locks held so it can lock the
308  * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
309  * any spin lock. Thus, we have to drop the sleepq spin lock while
310  * we handle those requests. This is safe since we have placed our
311  * thread on the sleep queue already.
312  */
313 #ifdef KTRACE
314  if (KTRPOINT(td, KTR_CSW)) {
315  sleepq_release(ident);
316  ktrcsw(1, 0, wmesg);
317  sleepq_lock(ident);
318  }
319 #endif
320 #ifdef WITNESS
321  sleepq_release(ident);
322  WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
323  wmesg);
324  sleepq_lock(ident);
325 #endif
326  if (timo)
327  rval = sleepq_timedwait(ident, 0);
328  else {
329  sleepq_wait(ident, 0);
330  rval = 0;
331  }
332 #ifdef KTRACE
333  if (KTRPOINT(td, KTR_CSW))
334  ktrcsw(0, 0, wmesg);
335 #endif
336  PICKUP_GIANT();
337  mtx_lock_spin(mtx);
338  WITNESS_RESTORE(&mtx->lock_object, mtx);
339  return (rval);
340 }
341 
342 /*
343  * pause() delays the calling thread by the given number of system ticks.
344  * During cold bootup, pause() uses the DELAY() function instead of
345  * the tsleep() function to do the waiting. The "timo" argument must be
346  * greater than or equal to zero. A "timo" value of zero is equivalent
347  * to a "timo" value of one.
348  */
349 int
350 pause(const char *wmesg, int timo)
351 {
352  KASSERT(timo >= 0, ("pause: timo must be >= 0"));
353 
354  /* silently convert invalid timeouts */
355  if (timo < 1)
356  timo = 1;
357 
358  if (cold) {
359  /*
360  * We delay one HZ at a time to avoid overflowing the
361  * system specific DELAY() function(s):
362  */
363  while (timo >= hz) {
364  DELAY(1000000);
365  timo -= hz;
366  }
367  if (timo > 0)
368  DELAY(timo * tick);
369  return (0);
370  }
371  return (tsleep(&pause_wchan, 0, wmesg, timo));
372 }
373 
374 /*
375  * Make all threads sleeping on the specified identifier runnable.
376  */
377 void
378 wakeup(void *ident)
379 {
380  int wakeup_swapper;
381 
382  sleepq_lock(ident);
383  wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
384  sleepq_release(ident);
385  if (wakeup_swapper) {
386  KASSERT(ident != &proc0,
387  ("wakeup and wakeup_swapper and proc0"));
388  kick_proc0();
389  }
390 }
391 
392 /*
393  * Make a thread sleeping on the specified identifier runnable.
394  * May wake more than one thread if a target thread is currently
395  * swapped out.
396  */
397 void
398 wakeup_one(void *ident)
399 {
400  int wakeup_swapper;
401 
402  sleepq_lock(ident);
403  wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
404  sleepq_release(ident);
405  if (wakeup_swapper)
406  kick_proc0();
407 }
408 
409 static void
411 {
412  thread_unlock(curthread);
413  kdb_backtrace();
414  kdb_reenter();
415  panic("%s: did not reenter debugger", __func__);
416 }
417 
418 /*
419  * The machine independent parts of context switching.
420  */
421 void
422 mi_switch(int flags, struct thread *newtd)
423 {
424  uint64_t runtime, new_switchtime;
425  struct thread *td;
426  struct proc *p;
427 
428  td = curthread; /* XXX */
429  THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
430  p = td->td_proc; /* XXX */
431  KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
432 #ifdef INVARIANTS
433  if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
434  mtx_assert(&Giant, MA_NOTOWNED);
435 #endif
436  KASSERT(td->td_critnest == 1 || panicstr,
437  ("mi_switch: switch in a critical section"));
438  KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
439  ("mi_switch: switch must be voluntary or involuntary"));
440  KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
441 
442  /*
443  * Don't perform context switches from the debugger.
444  */
445  if (kdb_active)
446  kdb_switch();
447  if (SCHEDULER_STOPPED())
448  return;
449  if (flags & SW_VOL) {
450  td->td_ru.ru_nvcsw++;
451  td->td_swvoltick = ticks;
452  } else
453  td->td_ru.ru_nivcsw++;
454 #ifdef SCHED_STATS
455  SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
456 #endif
457  /*
458  * Compute the amount of time during which the current
459  * thread was running, and add that to its total so far.
460  */
461  new_switchtime = cpu_ticks();
462  runtime = new_switchtime - PCPU_GET(switchtime);
463  td->td_runtime += runtime;
464  td->td_incruntime += runtime;
465  PCPU_SET(switchtime, new_switchtime);
466  td->td_generation++; /* bump preempt-detect counter */
467  PCPU_INC(cnt.v_swtch);
468  PCPU_SET(switchticks, ticks);
469  CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
470  td->td_tid, td->td_sched, p->p_pid, td->td_name);
471 #if (KTR_COMPILE & KTR_SCHED) != 0
472  if (TD_IS_IDLETHREAD(td))
473  KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
474  "prio:%d", td->td_priority);
475  else
476  KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
477  "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
478  "lockname:\"%s\"", td->td_lockname);
479 #endif
480  SDT_PROBE0(sched, , , preempt);
481 #ifdef XEN
482  PT_UPDATES_FLUSH();
483 #endif
484  sched_switch(td, newtd, flags);
485  KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
486  "prio:%d", td->td_priority);
487 
488  CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
489  td->td_tid, td->td_sched, p->p_pid, td->td_name);
490 
491  /*
492  * If the last thread was exiting, finish cleaning it up.
493  */
494  if ((td = PCPU_GET(deadthread))) {
495  PCPU_SET(deadthread, NULL);
496  thread_stash(td);
497  }
498 }
499 
500 /*
501  * Change thread state to be runnable, placing it on the run queue if
502  * it is in memory. If it is swapped out, return true so our caller
503  * will know to awaken the swapper.
504  */
505 int
506 setrunnable(struct thread *td)
507 {
508 
509  THREAD_LOCK_ASSERT(td, MA_OWNED);
510  KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
511  ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
512  switch (td->td_state) {
513  case TDS_RUNNING:
514  case TDS_RUNQ:
515  return (0);
516  case TDS_INHIBITED:
517  /*
518  * If we are only inhibited because we are swapped out
519  * then arange to swap in this process. Otherwise just return.
520  */
521  if (td->td_inhibitors != TDI_SWAPPED)
522  return (0);
523  /* FALLTHROUGH */
524  case TDS_CAN_RUN:
525  break;
526  default:
527  printf("state is 0x%x", td->td_state);
528  panic("setrunnable(2)");
529  }
530  if ((td->td_flags & TDF_INMEM) == 0) {
531  if ((td->td_flags & TDF_SWAPINREQ) == 0) {
532  td->td_flags |= TDF_SWAPINREQ;
533  return (1);
534  }
535  } else
536  sched_wakeup(td);
537  return (0);
538 }
539 
540 /*
541  * Compute a tenex style load average of a quantity on
542  * 1, 5 and 15 minute intervals.
543  */
544 static void
545 loadav(void *arg)
546 {
547  int i, nrun;
548  struct loadavg *avg;
549 
550  nrun = sched_load();
551  avg = &averunnable;
552 
553  for (i = 0; i < 3; i++)
554  avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
555  nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
556 
557  /*
558  * Schedule the next update to occur after 5 seconds, but add a
559  * random variation to avoid synchronisation with processes that
560  * run at regular intervals.
561  */
562  callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
563  loadav, NULL);
564 }
565 
566 /* ARGSUSED */
567 static void
569 {
570  callout_init(&loadav_callout, CALLOUT_MPSAFE);
571 
572  /* Kick off timeout driven events by calling first time. */
573  loadav(NULL);
574 }
575 
576 int
578 {
579 
580  return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
581 }
582 
583 void
585 {
586 
587  if (should_yield())
588  kern_yield(PRI_USER);
589 }
590 
591 void
592 kern_yield(int prio)
593 {
594  struct thread *td;
595 
596  td = curthread;
597  DROP_GIANT();
598  thread_lock(td);
599  if (prio == PRI_USER)
600  prio = td->td_user_pri;
601  if (prio >= 0)
602  sched_prio(td, prio);
603  mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
604  thread_unlock(td);
605  PICKUP_GIANT();
606 }
607 
608 /*
609  * General purpose yield system call.
610  */
611 int
612 sys_yield(struct thread *td, struct yield_args *uap)
613 {
614 
615  thread_lock(td);
616  if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
617  sched_prio(td, PRI_MAX_TIMESHARE);
618  mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
619  thread_unlock(td);
620  td->td_retval[0] = 0;
621  return (0);
622 }
int should_yield(void)
Definition: kern_synch.c:577
void sleepq_release(void *wchan)
void sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags, int queue)
void sched_prio(struct thread *td, u_char prio)
Definition: sched_4bsd.c:897
void sched_switch(struct thread *td, struct thread *newtd, int flags)
Definition: sched_4bsd.c:961
#define KTDSTATE(td)
Definition: kern_synch.c:76
char * sched_tdname(struct thread *td)
Definition: sched_4bsd.c:1700
const char * panicstr
int sleepq_timedwait_sig(void *wchan, int pri)
struct proc proc0
Definition: init_main.c:99
void panic(const char *fmt,...)
void maybe_yield(void)
Definition: kern_synch.c:584
static struct callout loadav_callout
Definition: kern_synch.c:90
void mi_switch(int flags, struct thread *newtd)
Definition: kern_synch.c:422
void sleepq_remove(struct thread *td, void *wchan)
void sleepq_set_timeout(void *wchan, int timo)
int sleepq_wait_sig(void *wchan, int pri)
void wakeup_one(void *ident)
Definition: kern_synch.c:398
void sleepq_lock(void *wchan)
SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE,"")
struct loadavg averunnable
Definition: kern_synch.c:92
static int dummy
struct mtx Giant
Definition: kern_mutex.c:140
void sleepq_wait(void *wchan, int pri)
int setrunnable(struct thread *td)
Definition: kern_synch.c:506
void kdb_backtrace(void)
Definition: subr_kdb.c:362
int sched_load(void)
Definition: sched_4bsd.c:1564
SDT_PROVIDER_DECLARE(sched)
int sleepq_broadcast(void *wchan, int flags, int pri, int queue)
__FBSDID("$BSDSUniX$")
static int pause_wchan
Definition: kern_synch.c:88
static void kdb_switch(void)
Definition: kern_synch.c:410
void sched_wakeup(struct thread *td)
Definition: sched_4bsd.c:1091
int _sleep(void *ident, struct lock_object *lock, int priority, const char *wmesg, int timo)
Definition: kern_synch.c:147
int sleepq_signal(void *wchan, int flags, int pri, int queue)
int msleep_spin(void *ident, struct mtx *mtx, const char *wmesg, int timo)
Definition: kern_synch.c:265
int pause(const char *wmesg, int timo)
Definition: kern_synch.c:350
int printf(const char *fmt,...)
Definition: subr_prf.c:367
SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup, NULL)
void kdb_reenter(void)
Definition: subr_kdb.c:495
void kern_yield(int prio)
Definition: kern_synch.c:592
void callout_init(struct callout *c, int mpsafe)
static void loadav(void *arg)
Definition: kern_synch.c:545
void init_sleepqueues(void)
void sleepinit(void)
Definition: kern_synch.c:124
void wakeup(void *ident)
Definition: kern_synch.c:378
int priority
Definition: cpufreq_if.m:46
void thread_stash(struct thread *td)
Definition: kern_thread.c:304
volatile int ticks
Definition: kern_clock.c:387
int hogticks
Definition: kern_synch.c:87
int kdb_active
Definition: subr_kdb.c:53
int sys_yield(struct thread *td, struct yield_args *uap)
Definition: kern_synch.c:612
SDT_PROBE_DEFINE(sched,,, preempt)
static fixpt_t cexp[3]
Definition: kern_synch.c:98
int tick
Definition: subr_param.c:85
static void synch_setup(void *dummy)
Definition: kern_synch.c:568
cpu_tick_f * cpu_ticks
Definition: kern_tc.c:986
int sleepq_timedwait(void *wchan, int pri)
int hz
Definition: subr_param.c:84