FreeBSD kernel kern code
kern_malloc.c
Go to the documentation of this file.
1 /*-
2  * Copyright (c) 1987, 1991, 1993
3  * The Regents of the University of California.
4  * Copyright (c) 2005-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  * notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  * notice, this list of conditions and the following disclaimer in the
14  * documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  * may be used to endorse or promote products derived from this software
17  * without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
32  */
33 
34 /*
35  * Kernel malloc(9) implementation -- general purpose kernel memory allocator
36  * based on memory types. Back end is implemented using the UMA(9) zone
37  * allocator. A set of fixed-size buckets are used for smaller allocations,
38  * and a special UMA allocation interface is used for larger allocations.
39  * Callers declare memory types, and statistics are maintained independently
40  * for each memory type. Statistics are maintained per-CPU for performance
41  * reasons. See malloc(9) and comments in malloc.h for a detailed
42  * description.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$BSDSUniX$");
47 
48 #include "opt_ddb.h"
49 #include "opt_kdtrace.h"
50 #include "opt_vm.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kdb.h>
55 #include <sys/kernel.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mbuf.h>
59 #include <sys/mutex.h>
60 #include <sys/vmmeter.h>
61 #include <sys/proc.h>
62 #include <sys/sbuf.h>
63 #include <sys/sysctl.h>
64 #include <sys/time.h>
65 
66 #include <vm/vm.h>
67 #include <vm/pmap.h>
68 #include <vm/vm_param.h>
69 #include <vm/vm_kern.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_map.h>
72 #include <vm/vm_page.h>
73 #include <vm/uma.h>
74 #include <vm/uma_int.h>
75 #include <vm/uma_dbg.h>
76 
77 #ifdef DEBUG_MEMGUARD
78 #include <vm/memguard.h>
79 #endif
80 #ifdef DEBUG_REDZONE
81 #include <vm/redzone.h>
82 #endif
83 
84 #if defined(INVARIANTS) && defined(__i386__)
85 #include <machine/cpu.h>
86 #endif
87 
88 #include <ddb/ddb.h>
89 
90 #ifdef KDTRACE_HOOKS
91 #include <sys/dtrace_bsd.h>
92 
93 dtrace_malloc_probe_func_t dtrace_malloc_probe;
94 #endif
95 
96 /*
97  * When realloc() is called, if the new size is sufficiently smaller than
98  * the old size, realloc() will allocate a new, smaller block to avoid
99  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
100  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
101  */
102 #ifndef REALLOC_FRACTION
103 #define REALLOC_FRACTION 1 /* new block if <= half the size */
104 #endif
105 
106 /*
107  * Centrally define some common malloc types.
108  */
109 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
110 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
111 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
112 
113 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
114 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
115 
116 static void kmeminit(void *);
117 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL);
118 
119 static struct malloc_type *kmemstatistics;
120 static vm_offset_t kmembase;
121 static vm_offset_t kmemlimit;
122 static int kmemcount;
123 
124 #define KMEM_ZSHIFT 4
125 #define KMEM_ZBASE 16
126 #define KMEM_ZMASK (KMEM_ZBASE - 1)
127 
128 #define KMEM_ZMAX PAGE_SIZE
129 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT)
130 static uint8_t kmemsize[KMEM_ZSIZE + 1];
131 
132 #ifndef MALLOC_DEBUG_MAXZONES
133 #define MALLOC_DEBUG_MAXZONES 1
134 #endif
136 
137 /*
138  * Small malloc(9) memory allocations are allocated from a set of UMA buckets
139  * of various sizes.
140  *
141  * XXX: The comment here used to read "These won't be powers of two for
142  * long." It's possible that a significant amount of wasted memory could be
143  * recovered by tuning the sizes of these buckets.
144  */
145 struct {
146  int kz_size;
147  char *kz_name;
149 } kmemzones[] = {
150  {16, "16", },
151  {32, "32", },
152  {64, "64", },
153  {128, "128", },
154  {256, "256", },
155  {512, "512", },
156  {1024, "1024", },
157  {2048, "2048", },
158  {4096, "4096", },
159 #if PAGE_SIZE > 4096
160  {8192, "8192", },
161 #if PAGE_SIZE > 8192
162  {16384, "16384", },
163 #if PAGE_SIZE > 16384
164  {32768, "32768", },
165 #if PAGE_SIZE > 32768
166  {65536, "65536", },
167 #if PAGE_SIZE > 65536
168 #error "Unsupported PAGE_SIZE"
169 #endif /* 65536 */
170 #endif /* 32768 */
171 #endif /* 16384 */
172 #endif /* 8192 */
173 #endif /* 4096 */
174  {0, NULL},
175 };
176 
177 /*
178  * Zone to allocate malloc type descriptions from. For ABI reasons, memory
179  * types are described by a data structure passed by the declaring code, but
180  * the malloc(9) implementation has its own data structure describing the
181  * type and statistics. This permits the malloc(9)-internal data structures
182  * to be modified without breaking binary-compiled kernel modules that
183  * declare malloc types.
184  */
185 static uma_zone_t mt_zone;
186 
188 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
189  "Size of kernel memory");
190 
191 static u_long vm_kmem_size_min;
192 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
193  "Minimum size of kernel memory");
194 
195 static u_long vm_kmem_size_max;
196 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
197  "Maximum size of kernel memory");
198 
199 static u_int vm_kmem_size_scale;
200 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
201  "Scale factor for kernel memory size");
202 
203 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
204 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
205  CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
206  sysctl_kmem_map_size, "LU", "Current kmem_map allocation size");
207 
208 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
209 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
210  CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
211  sysctl_kmem_map_free, "LU", "Largest contiguous free range in kmem_map");
212 
213 /*
214  * The malloc_mtx protects the kmemstatistics linked list.
215  */
216 struct mtx malloc_mtx;
217 
218 #ifdef MALLOC_PROFILE
219 uint64_t krequests[KMEM_ZSIZE + 1];
220 
221 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
222 #endif
223 
224 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
225 
226 /*
227  * time_uptime of the last malloc(9) failure (induced or real).
228  */
229 static time_t t_malloc_fail;
230 
231 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
232 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
233  "Kernel malloc debugging options");
234 #endif
235 
236 /*
237  * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
238  * the caller specifies M_NOWAIT. If set to 0, no failures are caused.
239  */
240 #ifdef MALLOC_MAKE_FAILURES
241 static int malloc_failure_rate;
242 static int malloc_nowait_count;
243 static int malloc_failure_count;
244 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW,
245  &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
246 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate);
247 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
248  &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
249 #endif
250 
251 static int
252 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
253 {
254  u_long size;
255 
256  size = kmem_map->size;
257  return (sysctl_handle_long(oidp, &size, 0, req));
258 }
259 
260 static int
261 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
262 {
263  u_long size;
264 
265  vm_map_lock_read(kmem_map);
266  size = kmem_map->root != NULL ? kmem_map->root->max_free :
267  kmem_map->max_offset - kmem_map->min_offset;
268  vm_map_unlock_read(kmem_map);
269  return (sysctl_handle_long(oidp, &size, 0, req));
270 }
271 
272 /*
273  * malloc(9) uma zone separation -- sub-page buffer overruns in one
274  * malloc type will affect only a subset of other malloc types.
275  */
276 #if MALLOC_DEBUG_MAXZONES > 1
277 static void
278 tunable_set_numzones(void)
279 {
280 
281  TUNABLE_INT_FETCH("debug.malloc.numzones",
282  &numzones);
283 
284  /* Sanity check the number of malloc uma zones. */
285  if (numzones <= 0)
286  numzones = 1;
289 }
290 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
291 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN,
292  &numzones, 0, "Number of malloc uma subzones");
293 
294 /*
295  * Any number that changes regularly is an okay choice for the
296  * offset. Build numbers are pretty good of you have them.
297  */
298 static u_int zone_offset = __BSDSUniX_version;
299 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
300 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
301  &zone_offset, 0, "Separate malloc types by examining the "
302  "Nth character in the malloc type short description.");
303 
304 static u_int
305 mtp_get_subzone(const char *desc)
306 {
307  size_t len;
308  u_int val;
309 
310  if (desc == NULL || (len = strlen(desc)) == 0)
311  return (0);
312  val = desc[zone_offset % len];
313  return (val % numzones);
314 }
315 #elif MALLOC_DEBUG_MAXZONES == 0
316 #error "MALLOC_DEBUG_MAXZONES must be positive."
317 #else
318 static inline u_int
319 mtp_get_subzone(const char *desc)
320 {
321 
322  return (0);
323 }
324 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
325 
326 int
328 {
329 
330  return (time_uptime - t_malloc_fail);
331 }
332 
333 /*
334  * An allocation has succeeded -- update malloc type statistics for the
335  * amount of bucket size. Occurs within a critical section so that the
336  * thread isn't preempted and doesn't migrate while updating per-PCU
337  * statistics.
338  */
339 static void
340 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
341  int zindx)
342 {
343  struct malloc_type_internal *mtip;
344  struct malloc_type_stats *mtsp;
345 
346  critical_enter();
347  mtip = mtp->ks_handle;
348  mtsp = &mtip->mti_stats[curcpu];
349  if (size > 0) {
350  mtsp->mts_memalloced += size;
351  mtsp->mts_numallocs++;
352  }
353  if (zindx != -1)
354  mtsp->mts_size |= 1 << zindx;
355 
356 #ifdef KDTRACE_HOOKS
357  if (dtrace_malloc_probe != NULL) {
358  uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
359  if (probe_id != 0)
360  (dtrace_malloc_probe)(probe_id,
361  (uintptr_t) mtp, (uintptr_t) mtip,
362  (uintptr_t) mtsp, size, zindx);
363  }
364 #endif
365 
366  critical_exit();
367 }
368 
369 void
370 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
371 {
372 
373  if (size > 0)
374  malloc_type_zone_allocated(mtp, size, -1);
375 }
376 
377 /*
378  * A free operation has occurred -- update malloc type statistics for the
379  * amount of the bucket size. Occurs within a critical section so that the
380  * thread isn't preempted and doesn't migrate while updating per-CPU
381  * statistics.
382  */
383 void
384 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
385 {
386  struct malloc_type_internal *mtip;
387  struct malloc_type_stats *mtsp;
388 
389  critical_enter();
390  mtip = mtp->ks_handle;
391  mtsp = &mtip->mti_stats[curcpu];
392  mtsp->mts_memfreed += size;
393  mtsp->mts_numfrees++;
394 
395 #ifdef KDTRACE_HOOKS
396  if (dtrace_malloc_probe != NULL) {
397  uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
398  if (probe_id != 0)
399  (dtrace_malloc_probe)(probe_id,
400  (uintptr_t) mtp, (uintptr_t) mtip,
401  (uintptr_t) mtsp, size, 0);
402  }
403 #endif
404 
405  critical_exit();
406 }
407 
408 /*
409  * contigmalloc:
410  *
411  * Allocate a block of physically contiguous memory.
412  *
413  * If M_NOWAIT is set, this routine will not block and return NULL if
414  * the allocation fails.
415  */
416 void *
417 contigmalloc(unsigned long size, struct malloc_type *type, int flags,
418  vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
419  unsigned long boundary)
420 {
421  void *ret;
422 
423  ret = (void *)kmem_alloc_contig(kernel_map, size, flags, low, high,
424  alignment, boundary, VM_MEMATTR_DEFAULT);
425  if (ret != NULL)
426  malloc_type_allocated(type, round_page(size));
427  return (ret);
428 }
429 
430 /*
431  * contigfree:
432  *
433  * Free a block of memory allocated by contigmalloc.
434  *
435  * This routine may not block.
436  */
437 void
438 contigfree(void *addr, unsigned long size, struct malloc_type *type)
439 {
440 
441  kmem_free(kernel_map, (vm_offset_t)addr, size);
442  malloc_type_freed(type, round_page(size));
443 }
444 
445 /*
446  * malloc:
447  *
448  * Allocate a block of memory.
449  *
450  * If M_NOWAIT is set, this routine will not block and return NULL if
451  * the allocation fails.
452  */
453 void *
454 malloc(unsigned long size, struct malloc_type *mtp, int flags)
455 {
456  int indx;
457  struct malloc_type_internal *mtip;
458  caddr_t va;
459  uma_zone_t zone;
460 #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
461  unsigned long osize = size;
462 #endif
463 
464 #ifdef INVARIANTS
465  KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic"));
466  /*
467  * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
468  */
469  indx = flags & (M_WAITOK | M_NOWAIT);
470  if (indx != M_NOWAIT && indx != M_WAITOK) {
471  static struct timeval lasterr;
472  static int curerr, once;
473  if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
474  printf("Bad malloc flags: %x\n", indx);
475  kdb_backtrace();
476  flags |= M_WAITOK;
477  once++;
478  }
479  }
480 #endif
481 #ifdef MALLOC_MAKE_FAILURES
482  if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
483  atomic_add_int(&malloc_nowait_count, 1);
484  if ((malloc_nowait_count % malloc_failure_rate) == 0) {
485  atomic_add_int(&malloc_failure_count, 1);
487  return (NULL);
488  }
489  }
490 #endif
491  if (flags & M_WAITOK)
492  KASSERT(curthread->td_intr_nesting_level == 0,
493  ("malloc(M_WAITOK) in interrupt context"));
494 
495 #ifdef DEBUG_MEMGUARD
496  if (memguard_cmp(mtp, size)) {
497  va = memguard_alloc(size, flags);
498  if (va != NULL)
499  return (va);
500  /* This is unfortunate but should not be fatal. */
501  }
502 #endif
503 
504 #ifdef DEBUG_REDZONE
505  size = redzone_size_ntor(size);
506 #endif
507 
508  if (size <= KMEM_ZMAX) {
509  mtip = mtp->ks_handle;
510  if (size & KMEM_ZMASK)
511  size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
512  indx = kmemsize[size >> KMEM_ZSHIFT];
513  KASSERT(mtip->mti_zone < numzones,
514  ("mti_zone %u out of range %d",
515  mtip->mti_zone, numzones));
516  zone = kmemzones[indx].kz_zone[mtip->mti_zone];
517 #ifdef MALLOC_PROFILE
518  krequests[size >> KMEM_ZSHIFT]++;
519 #endif
520  va = uma_zalloc(zone, flags);
521  if (va != NULL)
522  size = zone->uz_size;
523  malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
524  } else {
525  size = roundup(size, PAGE_SIZE);
526  zone = NULL;
527  va = uma_large_malloc(size, flags);
528  malloc_type_allocated(mtp, va == NULL ? 0 : size);
529  }
530  if (flags & M_WAITOK)
531  KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
532  else if (va == NULL)
534 #ifdef DIAGNOSTIC
535  if (va != NULL && !(flags & M_ZERO)) {
536  memset(va, 0x70, osize);
537  }
538 #endif
539 #ifdef DEBUG_REDZONE
540  if (va != NULL)
541  va = redzone_setup(va, osize);
542 #endif
543  return ((void *) va);
544 }
545 
546 /*
547  * free:
548  *
549  * Free a block of memory allocated by malloc.
550  *
551  * This routine may not block.
552  */
553 void
554 free(void *addr, struct malloc_type *mtp)
555 {
556  uma_slab_t slab;
557  u_long size;
558 
559  KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic"));
560 
561  /* free(NULL, ...) does nothing */
562  if (addr == NULL)
563  return;
564 
565 #ifdef DEBUG_MEMGUARD
566  if (is_memguard_addr(addr)) {
567  memguard_free(addr);
568  return;
569  }
570 #endif
571 
572 #ifdef DEBUG_REDZONE
573  redzone_check(addr);
574  addr = redzone_addr_ntor(addr);
575 #endif
576 
577  slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
578 
579  if (slab == NULL)
580  panic("free: address %p(%p) has not been allocated.\n",
581  addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
582 
583 
584  if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
585 #ifdef INVARIANTS
586  struct malloc_type **mtpp = addr;
587 #endif
588  size = slab->us_keg->uk_size;
589 #ifdef INVARIANTS
590  /*
591  * Cache a pointer to the malloc_type that most recently freed
592  * this memory here. This way we know who is most likely to
593  * have stepped on it later.
594  *
595  * This code assumes that size is a multiple of 8 bytes for
596  * 64 bit machines
597  */
598  mtpp = (struct malloc_type **)
599  ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
600  mtpp += (size - sizeof(struct malloc_type *)) /
601  sizeof(struct malloc_type *);
602  *mtpp = mtp;
603 #endif
604  uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
605  } else {
606  size = slab->us_size;
607  uma_large_free(slab);
608  }
609  malloc_type_freed(mtp, size);
610 }
611 
612 /*
613  * realloc: change the size of a memory block
614  */
615 void *
616 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
617 {
618  uma_slab_t slab;
619  unsigned long alloc;
620  void *newaddr;
621 
622  KASSERT(mtp->ks_magic == M_MAGIC,
623  ("realloc: bad malloc type magic"));
624 
625  /* realloc(NULL, ...) is equivalent to malloc(...) */
626  if (addr == NULL)
627  return (malloc(size, mtp, flags));
628 
629  /*
630  * XXX: Should report free of old memory and alloc of new memory to
631  * per-CPU stats.
632  */
633 
634 #ifdef DEBUG_MEMGUARD
635  if (is_memguard_addr(addr))
636  return (memguard_realloc(addr, size, mtp, flags));
637 #endif
638 
639 #ifdef DEBUG_REDZONE
640  slab = NULL;
641  alloc = redzone_get_size(addr);
642 #else
643  slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
644 
645  /* Sanity check */
646  KASSERT(slab != NULL,
647  ("realloc: address %p out of range", (void *)addr));
648 
649  /* Get the size of the original block */
650  if (!(slab->us_flags & UMA_SLAB_MALLOC))
651  alloc = slab->us_keg->uk_size;
652  else
653  alloc = slab->us_size;
654 
655  /* Reuse the original block if appropriate */
656  if (size <= alloc
657  && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
658  return (addr);
659 #endif /* !DEBUG_REDZONE */
660 
661  /* Allocate a new, bigger (or smaller) block */
662  if ((newaddr = malloc(size, mtp, flags)) == NULL)
663  return (NULL);
664 
665  /* Copy over original contents */
666  bcopy(addr, newaddr, min(size, alloc));
667  free(addr, mtp);
668  return (newaddr);
669 }
670 
671 /*
672  * reallocf: same as realloc() but free memory on failure.
673  */
674 void *
675 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
676 {
677  void *mem;
678 
679  if ((mem = realloc(addr, size, mtp, flags)) == NULL)
680  free(addr, mtp);
681  return (mem);
682 }
683 
684 /*
685  * Initialize the kernel memory allocator
686  */
687 /* ARGSUSED*/
688 static void
690 {
691  uint8_t indx;
692  u_long mem_size, tmp;
693  int i;
694 
695  mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
696 
697  /*
698  * Try to auto-tune the kernel memory size, so that it is
699  * more applicable for a wider range of machine sizes. The
700  * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
701  * available.
702  *
703  * Note that the kmem_map is also used by the zone allocator,
704  * so make sure that there is enough space.
705  */
706  vm_kmem_size = VM_KMEM_SIZE + nmbclusters * PAGE_SIZE;
707  mem_size = cnt.v_page_count;
708 
709 #if defined(VM_KMEM_SIZE_SCALE)
710  vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
711 #endif
712  TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale);
713  if (vm_kmem_size_scale > 0 &&
714  (mem_size / vm_kmem_size_scale) > (vm_kmem_size / PAGE_SIZE))
715  vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
716 
717 #if defined(VM_KMEM_SIZE_MIN)
718  vm_kmem_size_min = VM_KMEM_SIZE_MIN;
719 #endif
720  TUNABLE_ULONG_FETCH("vm.kmem_size_min", &vm_kmem_size_min);
723  }
724 
725 #if defined(VM_KMEM_SIZE_MAX)
726  vm_kmem_size_max = VM_KMEM_SIZE_MAX;
727 #endif
728  TUNABLE_ULONG_FETCH("vm.kmem_size_max", &vm_kmem_size_max);
731 
732  /* Allow final override from the kernel environment */
733  TUNABLE_ULONG_FETCH("vm.kmem_size", &vm_kmem_size);
734 
735  /*
736  * Limit kmem virtual size to twice the physical memory.
737  * This allows for kmem map sparseness, but limits the size
738  * to something sane. Be careful to not overflow the 32bit
739  * ints while doing the check or the adjustment.
740  */
741  if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
742  vm_kmem_size = 2 * mem_size * PAGE_SIZE;
743 
744 #ifdef DEBUG_MEMGUARD
745  tmp = memguard_fudge(vm_kmem_size, kernel_map);
746 #else
747  tmp = vm_kmem_size;
748 #endif
749  kmem_map = kmem_suballoc(kernel_map, &kmembase, &kmemlimit,
750  tmp, TRUE);
751  kmem_map->system_map = 1;
752 
753 #ifdef DEBUG_MEMGUARD
754  /*
755  * Initialize MemGuard if support compiled in. MemGuard is a
756  * replacement allocator used for detecting tamper-after-free
757  * scenarios as they occur. It is only used for debugging.
758  */
759  memguard_init(kmem_map);
760 #endif
761 
762  uma_startup2();
763 
764  mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
765 #ifdef INVARIANTS
766  mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
767 #else
768  NULL, NULL, NULL, NULL,
769 #endif
770  UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
771  for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
772  int size = kmemzones[indx].kz_size;
773  char *name = kmemzones[indx].kz_name;
774  int subzone;
775 
776  for (subzone = 0; subzone < numzones; subzone++) {
777  kmemzones[indx].kz_zone[subzone] =
778  uma_zcreate(name, size,
779 #ifdef INVARIANTS
780  mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
781 #else
782  NULL, NULL, NULL, NULL,
783 #endif
784  UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
785  }
786  for (;i <= size; i+= KMEM_ZBASE)
787  kmemsize[i >> KMEM_ZSHIFT] = indx;
788 
789  }
790 }
791 
792 void
793 malloc_init(void *data)
794 {
795  struct malloc_type_internal *mtip;
796  struct malloc_type *mtp;
797 
798  KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init"));
799 
800  mtp = data;
801  if (mtp->ks_magic != M_MAGIC)
802  panic("malloc_init: bad malloc type magic");
803 
804  mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
805  mtp->ks_handle = mtip;
806  mtip->mti_zone = mtp_get_subzone(mtp->ks_shortdesc);
807 
808  mtx_lock(&malloc_mtx);
809  mtp->ks_next = kmemstatistics;
810  kmemstatistics = mtp;
811  kmemcount++;
812  mtx_unlock(&malloc_mtx);
813 }
814 
815 void
816 malloc_uninit(void *data)
817 {
818  struct malloc_type_internal *mtip;
819  struct malloc_type_stats *mtsp;
820  struct malloc_type *mtp, *temp;
821  uma_slab_t slab;
822  long temp_allocs, temp_bytes;
823  int i;
824 
825  mtp = data;
826  KASSERT(mtp->ks_magic == M_MAGIC,
827  ("malloc_uninit: bad malloc type magic"));
828  KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
829 
830  mtx_lock(&malloc_mtx);
831  mtip = mtp->ks_handle;
832  mtp->ks_handle = NULL;
833  if (mtp != kmemstatistics) {
834  for (temp = kmemstatistics; temp != NULL;
835  temp = temp->ks_next) {
836  if (temp->ks_next == mtp) {
837  temp->ks_next = mtp->ks_next;
838  break;
839  }
840  }
841  KASSERT(temp,
842  ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
843  } else
844  kmemstatistics = mtp->ks_next;
845  kmemcount--;
846  mtx_unlock(&malloc_mtx);
847 
848  /*
849  * Look for memory leaks.
850  */
851  temp_allocs = temp_bytes = 0;
852  for (i = 0; i < MAXCPU; i++) {
853  mtsp = &mtip->mti_stats[i];
854  temp_allocs += mtsp->mts_numallocs;
855  temp_allocs -= mtsp->mts_numfrees;
856  temp_bytes += mtsp->mts_memalloced;
857  temp_bytes -= mtsp->mts_memfreed;
858  }
859  if (temp_allocs > 0 || temp_bytes > 0) {
860  printf("Warning: memory type %s leaked memory on destroy "
861  "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
862  temp_allocs, temp_bytes);
863  }
864 
865  slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
866  uma_zfree_arg(mt_zone, mtip, slab);
867 }
868 
869 struct malloc_type *
870 malloc_desc2type(const char *desc)
871 {
872  struct malloc_type *mtp;
873 
874  mtx_assert(&malloc_mtx, MA_OWNED);
875  for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
876  if (strcmp(mtp->ks_shortdesc, desc) == 0)
877  return (mtp);
878  }
879  return (NULL);
880 }
881 
882 static int
883 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
884 {
885  struct malloc_type_stream_header mtsh;
886  struct malloc_type_internal *mtip;
887  struct malloc_type_header mth;
888  struct malloc_type *mtp;
889  int error, i;
890  struct sbuf sbuf;
891 
892  error = sysctl_wire_old_buffer(req, 0);
893  if (error != 0)
894  return (error);
895  sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
896  mtx_lock(&malloc_mtx);
897 
898  /*
899  * Insert stream header.
900  */
901  bzero(&mtsh, sizeof(mtsh));
902  mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
903  mtsh.mtsh_maxcpus = MAXCPU;
904  mtsh.mtsh_count = kmemcount;
905  (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
906 
907  /*
908  * Insert alternating sequence of type headers and type statistics.
909  */
910  for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
911  mtip = (struct malloc_type_internal *)mtp->ks_handle;
912 
913  /*
914  * Insert type header.
915  */
916  bzero(&mth, sizeof(mth));
917  strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
918  (void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
919 
920  /*
921  * Insert type statistics for each CPU.
922  */
923  for (i = 0; i < MAXCPU; i++) {
924  (void)sbuf_bcat(&sbuf, &mtip->mti_stats[i],
925  sizeof(mtip->mti_stats[i]));
926  }
927  }
928  mtx_unlock(&malloc_mtx);
929  error = sbuf_finish(&sbuf);
930  sbuf_delete(&sbuf);
931  return (error);
932 }
933 
934 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
935  0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
936  "Return malloc types");
937 
938 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
939  "Count of kernel malloc types");
940 
941 void
942 malloc_type_list(malloc_type_list_func_t *func, void *arg)
943 {
944  struct malloc_type *mtp, **bufmtp;
945  int count, i;
946  size_t buflen;
947 
948  mtx_lock(&malloc_mtx);
949 restart:
950  mtx_assert(&malloc_mtx, MA_OWNED);
951  count = kmemcount;
952  mtx_unlock(&malloc_mtx);
953 
954  buflen = sizeof(struct malloc_type *) * count;
955  bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
956 
957  mtx_lock(&malloc_mtx);
958 
959  if (count < kmemcount) {
960  free(bufmtp, M_TEMP);
961  goto restart;
962  }
963 
964  for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
965  bufmtp[i] = mtp;
966 
967  mtx_unlock(&malloc_mtx);
968 
969  for (i = 0; i < count; i++)
970  (func)(bufmtp[i], arg);
971 
972  free(bufmtp, M_TEMP);
973 }
974 
975 #ifdef DDB
976 DB_SHOW_COMMAND(malloc, db_show_malloc)
977 {
978  struct malloc_type_internal *mtip;
979  struct malloc_type *mtp;
980  uint64_t allocs, frees;
981  uint64_t alloced, freed;
982  int i;
983 
984  db_printf("%18s %12s %12s %12s\n", "Type", "InUse", "MemUse",
985  "Requests");
986  for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
987  mtip = (struct malloc_type_internal *)mtp->ks_handle;
988  allocs = 0;
989  frees = 0;
990  alloced = 0;
991  freed = 0;
992  for (i = 0; i < MAXCPU; i++) {
993  allocs += mtip->mti_stats[i].mts_numallocs;
994  frees += mtip->mti_stats[i].mts_numfrees;
995  alloced += mtip->mti_stats[i].mts_memalloced;
996  freed += mtip->mti_stats[i].mts_memfreed;
997  }
998  db_printf("%18s %12ju %12juK %12ju\n",
999  mtp->ks_shortdesc, allocs - frees,
1000  (alloced - freed + 1023) / 1024, allocs);
1001  if (db_pager_quit)
1002  break;
1003  }
1004 }
1005 
1006 #if MALLOC_DEBUG_MAXZONES > 1
1007 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
1008 {
1009  struct malloc_type_internal *mtip;
1010  struct malloc_type *mtp;
1011  u_int subzone;
1012 
1013  if (!have_addr) {
1014  db_printf("Usage: show multizone_matches <malloc type/addr>\n");
1015  return;
1016  }
1017  mtp = (void *)addr;
1018  if (mtp->ks_magic != M_MAGIC) {
1019  db_printf("Magic %lx does not match expected %x\n",
1020  mtp->ks_magic, M_MAGIC);
1021  return;
1022  }
1023 
1024  mtip = mtp->ks_handle;
1025  subzone = mtip->mti_zone;
1026 
1027  for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1028  mtip = mtp->ks_handle;
1029  if (mtip->mti_zone != subzone)
1030  continue;
1031  db_printf("%s\n", mtp->ks_shortdesc);
1032  if (db_pager_quit)
1033  break;
1034  }
1035 }
1036 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
1037 #endif /* DDB */
1038 
1039 #ifdef MALLOC_PROFILE
1040 
1041 static int
1042 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
1043 {
1044  struct sbuf sbuf;
1045  uint64_t count;
1046  uint64_t waste;
1047  uint64_t mem;
1048  int error;
1049  int rsize;
1050  int size;
1051  int i;
1052 
1053  waste = 0;
1054  mem = 0;
1055 
1056  error = sysctl_wire_old_buffer(req, 0);
1057  if (error != 0)
1058  return (error);
1059  sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
1060  sbuf_printf(&sbuf,
1061  "\n Size Requests Real Size\n");
1062  for (i = 0; i < KMEM_ZSIZE; i++) {
1063  size = i << KMEM_ZSHIFT;
1064  rsize = kmemzones[kmemsize[i]].kz_size;
1065  count = (long long unsigned)krequests[i];
1066 
1067  sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
1068  (unsigned long long)count, rsize);
1069 
1070  if ((rsize * count) > (size * count))
1071  waste += (rsize * count) - (size * count);
1072  mem += (rsize * count);
1073  }
1074  sbuf_printf(&sbuf,
1075  "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
1076  (unsigned long long)mem, (unsigned long long)waste);
1077  error = sbuf_finish(&sbuf);
1078  sbuf_delete(&sbuf);
1079  return (error);
1080 }
1081 
1082 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
1083  NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
1084 #endif /* MALLOC_PROFILE */
char * kz_name
Definition: kern_malloc.c:147
static int kmemcount
Definition: kern_malloc.c:122
SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN,&vm_kmem_size, 0,"Size of kernel memory")
#define KMEM_ZBASE
Definition: kern_malloc.c:125
static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
Definition: kern_malloc.c:261
void * realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:616
__FBSDID("$BSDSUniX$")
TUNABLE_INT("kern.eventtimer.singlemul",&singlemul)
void critical_exit(void)
Definition: kern_switch.c:192
static SYSCTL_NODE(_debug, OID_AUTO, cpufreq, CTLFLAG_RD, NULL,"cpufreq debugging")
int ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
Definition: kern_time.c:948
static u_long vm_kmem_size_min
Definition: kern_malloc.c:191
void malloc_uninit(void *data)
Definition: kern_malloc.c:816
static u_int mtp_get_subzone(const char *desc)
Definition: kern_malloc.c:319
void * malloc(unsigned long size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:454
static time_t t_malloc_fail
Definition: kern_malloc.c:229
void contigfree(void *addr, unsigned long size, struct malloc_type *type)
Definition: kern_malloc.c:438
void panic(const char *fmt,...)
static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
Definition: kern_malloc.c:883
int nmbclusters
Definition: kern_mbuf.c:101
int malloc_last_fail(void)
Definition: kern_malloc.c:327
const char * name
Definition: kern_fail.c:97
SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
void malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
Definition: kern_malloc.c:370
static void kmeminit(void *)
Definition: kern_malloc.c:689
int * type
Definition: cpufreq_if.m:98
void * contigmalloc(unsigned long size, struct malloc_type *type, int flags, vm_paddr_t low, vm_paddr_t high, unsigned long alignment, unsigned long boundary)
Definition: kern_malloc.c:417
#define KMEM_ZSHIFT
Definition: kern_malloc.c:124
static u_int vm_kmem_size_scale
Definition: kern_malloc.c:199
struct malloc_type * malloc_desc2type(const char *desc)
Definition: kern_malloc.c:870
static void malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, int zindx)
Definition: kern_malloc.c:340
SYSCTL_OID(_security_jail, OID_AUTO, list, CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, 0, sysctl_jail_list,"S","List of active jails")
static int dummy
struct @4 kmemzones[]
SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size, CTLFLAG_RD|CTLTYPE_ULONG|CTLFLAG_MPSAFE, NULL, 0, sysctl_kmem_map_size,"LU","Current kmem_map allocation size")
struct mtx malloc_mtx
Definition: kern_malloc.c:216
int sbuf_printf(struct sbuf *s, const char *fmt,...)
Definition: subr_sbuf.c:632
static u_long vm_kmem_size_max
Definition: kern_malloc.c:195
void kdb_backtrace(void)
Definition: subr_kdb.c:362
#define MALLOC_DEBUG_MAXZONES
Definition: kern_malloc.c:133
static struct malloc_type * kmemstatistics
Definition: kern_malloc.c:119
void malloc_type_list(malloc_type_list_func_t *func, void *arg)
Definition: kern_malloc.c:942
static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
Definition: kern_malloc.c:252
#define REALLOC_FRACTION
Definition: kern_malloc.c:103
static vm_offset_t kmembase
Definition: kern_malloc.c:120
static int numzones
Definition: kern_malloc.c:135
#define KMEM_ZMASK
Definition: kern_malloc.c:126
void free(void *addr, struct malloc_type *mtp)
Definition: kern_malloc.c:554
int printf(const char *fmt,...)
Definition: subr_prf.c:367
uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES]
Definition: kern_malloc.c:148
void sbuf_delete(struct sbuf *s)
Definition: subr_sbuf.c:753
SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD,&kmemcount, 0,"Count of kernel malloc types")
int sysctl_wire_old_buffer(struct sysctl_req *req, size_t len)
Definition: kern_sysctl.c:1364
#define KMEM_ZMAX
Definition: kern_malloc.c:128
void mtx_init(struct mtx *m, const char *name, const char *type, int opts)
Definition: kern_mutex.c:837
int sbuf_bcat(struct sbuf *s, const void *buf, size_t len)
Definition: subr_sbuf.c:389
int sbuf_finish(struct sbuf *s)
Definition: subr_sbuf.c:694
static uint8_t kmemsize[KMEM_ZSIZE+1]
Definition: kern_malloc.c:130
int kz_size
Definition: kern_malloc.c:146
void malloc_init(void *data)
Definition: kern_malloc.c:793
u_long vm_kmem_size
Definition: kern_malloc.c:187
volatile time_t time_uptime
Definition: kern_tc.c:95
#define KMEM_ZSIZE
Definition: kern_malloc.c:129
MALLOC_DEFINE(M_CACHE,"cache","Various Dynamically allocated caches")
int sysctl_handle_long(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:1043
void * reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:675
void malloc_type_freed(struct malloc_type *mtp, unsigned long size)
Definition: kern_malloc.c:384
static vm_offset_t kmemlimit
Definition: kern_malloc.c:121
static uma_zone_t mt_zone
Definition: kern_malloc.c:185
void critical_enter(void)
Definition: kern_switch.c:181
struct sbuf * sbuf_new_for_sysctl(struct sbuf *s, char *buf, int length, struct sysctl_req *req)
Definition: kern_sysctl.c:1676
int * count
Definition: cpufreq_if.m:63
SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN,&vm_kmem_size_scale, 0,"Scale factor for kernel memory size")