FreeBSD kernel kern code
kern_switch.c
Go to the documentation of this file.
1 /*-
2  * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  * notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  * notice, this list of conditions and the following disclaimer in the
12  * documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$BSDSUniX$");
30 
31 #include "opt_sched.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kdb.h>
36 #include <sys/kernel.h>
37 #include <sys/ktr.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/queue.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/sysctl.h>
45 
46 #include <machine/cpu.h>
47 
48 /* Uncomment this to enable logging of critical_enter/exit. */
49 #if 0
50 #define KTR_CRITICAL KTR_SCHED
51 #else
52 #define KTR_CRITICAL 0
53 #endif
54 
55 #ifdef FULL_PREEMPTION
56 #ifndef PREEMPTION
57 #error "The FULL_PREEMPTION option requires the PREEMPTION option"
58 #endif
59 #endif
60 
61 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
62 
63 /*
64  * kern.sched.preemption allows user space to determine if preemption support
65  * is compiled in or not. It is not currently a boot or runtime flag that
66  * can be changed.
67  */
68 #ifdef PREEMPTION
69 static int kern_sched_preemption = 1;
70 #else
71 static int kern_sched_preemption = 0;
72 #endif
73 SYSCTL_INT(_kern_sched, OID_AUTO, preemption, CTLFLAG_RD,
74  &kern_sched_preemption, 0, "Kernel preemption enabled");
75 
76 /*
77  * Support for scheduler stats exported via kern.sched.stats. All stats may
78  * be reset with kern.sched.stats.reset = 1. Stats may be defined elsewhere
79  * with SCHED_STAT_DEFINE().
80  */
81 #ifdef SCHED_STATS
82 SYSCTL_NODE(_kern_sched, OID_AUTO, stats, CTLFLAG_RW, 0, "switch stats");
83 
84 /* Switch reasons from mi_switch(). */
85 DPCPU_DEFINE(long, sched_switch_stats[SWT_COUNT]);
86 SCHED_STAT_DEFINE_VAR(uncategorized,
87  &DPCPU_NAME(sched_switch_stats[SWT_NONE]), "");
88 SCHED_STAT_DEFINE_VAR(preempt,
89  &DPCPU_NAME(sched_switch_stats[SWT_PREEMPT]), "");
90 SCHED_STAT_DEFINE_VAR(owepreempt,
91  &DPCPU_NAME(sched_switch_stats[SWT_OWEPREEMPT]), "");
92 SCHED_STAT_DEFINE_VAR(turnstile,
93  &DPCPU_NAME(sched_switch_stats[SWT_TURNSTILE]), "");
94 SCHED_STAT_DEFINE_VAR(sleepq,
95  &DPCPU_NAME(sched_switch_stats[SWT_SLEEPQ]), "");
96 SCHED_STAT_DEFINE_VAR(sleepqtimo,
97  &DPCPU_NAME(sched_switch_stats[SWT_SLEEPQTIMO]), "");
98 SCHED_STAT_DEFINE_VAR(relinquish,
99  &DPCPU_NAME(sched_switch_stats[SWT_RELINQUISH]), "");
100 SCHED_STAT_DEFINE_VAR(needresched,
101  &DPCPU_NAME(sched_switch_stats[SWT_NEEDRESCHED]), "");
102 SCHED_STAT_DEFINE_VAR(idle,
103  &DPCPU_NAME(sched_switch_stats[SWT_IDLE]), "");
104 SCHED_STAT_DEFINE_VAR(iwait,
105  &DPCPU_NAME(sched_switch_stats[SWT_IWAIT]), "");
106 SCHED_STAT_DEFINE_VAR(suspend,
107  &DPCPU_NAME(sched_switch_stats[SWT_SUSPEND]), "");
108 SCHED_STAT_DEFINE_VAR(remotepreempt,
109  &DPCPU_NAME(sched_switch_stats[SWT_REMOTEPREEMPT]), "");
110 SCHED_STAT_DEFINE_VAR(remotewakeidle,
111  &DPCPU_NAME(sched_switch_stats[SWT_REMOTEWAKEIDLE]), "");
112 
113 static int
114 sysctl_stats_reset(SYSCTL_HANDLER_ARGS)
115 {
116  struct sysctl_oid *p;
117  uintptr_t counter;
118  int error;
119  int val;
120  int i;
121 
122  val = 0;
123  error = sysctl_handle_int(oidp, &val, 0, req);
124  if (error != 0 || req->newptr == NULL)
125  return (error);
126  if (val == 0)
127  return (0);
128  /*
129  * Traverse the list of children of _kern_sched_stats and reset each
130  * to 0. Skip the reset entry.
131  */
132  SLIST_FOREACH(p, oidp->oid_parent, oid_link) {
133  if (p == oidp || p->oid_arg1 == NULL)
134  continue;
135  counter = (uintptr_t)p->oid_arg1;
136  CPU_FOREACH(i) {
137  *(long *)(dpcpu_off[i] + counter) = 0;
138  }
139  }
140  return (0);
141 }
142 
143 SYSCTL_PROC(_kern_sched_stats, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_WR, NULL,
144  0, sysctl_stats_reset, "I", "Reset scheduler statistics");
145 #endif
146 
147 /************************************************************************
148  * Functions that manipulate runnability from a thread perspective. *
149  ************************************************************************/
150 /*
151  * Select the thread that will be run next.
152  */
153 struct thread *
155 {
156  struct thread *td;
157 
158 retry:
159  td = sched_choose();
160 
161  /*
162  * If we are in panic, only allow system threads,
163  * plus the one we are running in, to be run.
164  */
165  if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
166  (td->td_flags & TDF_INPANIC) == 0)) {
167  /* note that it is no longer on the run queue */
168  TD_SET_CAN_RUN(td);
169  goto retry;
170  }
171 
172  TD_SET_RUNNING(td);
173  return (td);
174 }
175 
176 /*
177  * Kernel thread preemption implementation. Critical sections mark
178  * regions of code in which preemptions are not allowed.
179  */
180 void
182 {
183  struct thread *td;
184 
185  td = curthread;
186  td->td_critnest++;
187  CTR4(KTR_CRITICAL, "critical_enter by thread %p (%ld, %s) to %d", td,
188  (long)td->td_proc->p_pid, td->td_name, td->td_critnest);
189 }
190 
191 void
193 {
194  struct thread *td;
195  int flags;
196 
197  td = curthread;
198  KASSERT(td->td_critnest != 0,
199  ("critical_exit: td_critnest == 0"));
200 
201  if (td->td_critnest == 1) {
202  td->td_critnest = 0;
203  if (td->td_owepreempt && !kdb_active) {
204  td->td_critnest = 1;
205  thread_lock(td);
206  td->td_critnest--;
207  flags = SW_INVOL | SW_PREEMPT;
208  if (TD_IS_IDLETHREAD(td))
209  flags |= SWT_IDLE;
210  else
211  flags |= SWT_OWEPREEMPT;
212  mi_switch(flags, NULL);
213  thread_unlock(td);
214  }
215  } else
216  td->td_critnest--;
217 
218  CTR4(KTR_CRITICAL, "critical_exit by thread %p (%ld, %s) to %d", td,
219  (long)td->td_proc->p_pid, td->td_name, td->td_critnest);
220 }
221 
222 /************************************************************************
223  * SYSTEM RUN QUEUE manipulations and tests *
224  ************************************************************************/
225 /*
226  * Initialize a run structure.
227  */
228 void
229 runq_init(struct runq *rq)
230 {
231  int i;
232 
233  bzero(rq, sizeof *rq);
234  for (i = 0; i < RQ_NQS; i++)
235  TAILQ_INIT(&rq->rq_queues[i]);
236 }
237 
238 /*
239  * Clear the status bit of the queue corresponding to priority level pri,
240  * indicating that it is empty.
241  */
242 static __inline void
243 runq_clrbit(struct runq *rq, int pri)
244 {
245  struct rqbits *rqb;
246 
247  rqb = &rq->rq_status;
248  CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
249  rqb->rqb_bits[RQB_WORD(pri)],
250  rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
251  RQB_BIT(pri), RQB_WORD(pri));
252  rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
253 }
254 
255 /*
256  * Find the index of the first non-empty run queue. This is done by
257  * scanning the status bits, a set bit indicates a non-empty queue.
258  */
259 static __inline int
260 runq_findbit(struct runq *rq)
261 {
262  struct rqbits *rqb;
263  int pri;
264  int i;
265 
266  rqb = &rq->rq_status;
267  for (i = 0; i < RQB_LEN; i++)
268  if (rqb->rqb_bits[i]) {
269  pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
270  CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
271  rqb->rqb_bits[i], i, pri);
272  return (pri);
273  }
274 
275  return (-1);
276 }
277 
278 static __inline int
279 runq_findbit_from(struct runq *rq, u_char pri)
280 {
281  struct rqbits *rqb;
282  rqb_word_t mask;
283  int i;
284 
285  /*
286  * Set the mask for the first word so we ignore priorities before 'pri'.
287  */
288  mask = (rqb_word_t)-1 << (pri & (RQB_BPW - 1));
289  rqb = &rq->rq_status;
290 again:
291  for (i = RQB_WORD(pri); i < RQB_LEN; mask = -1, i++) {
292  mask = rqb->rqb_bits[i] & mask;
293  if (mask == 0)
294  continue;
295  pri = RQB_FFS(mask) + (i << RQB_L2BPW);
296  CTR3(KTR_RUNQ, "runq_findbit_from: bits=%#x i=%d pri=%d",
297  mask, i, pri);
298  return (pri);
299  }
300  if (pri == 0)
301  return (-1);
302  /*
303  * Wrap back around to the beginning of the list just once so we
304  * scan the whole thing.
305  */
306  pri = 0;
307  goto again;
308 }
309 
310 /*
311  * Set the status bit of the queue corresponding to priority level pri,
312  * indicating that it is non-empty.
313  */
314 static __inline void
315 runq_setbit(struct runq *rq, int pri)
316 {
317  struct rqbits *rqb;
318 
319  rqb = &rq->rq_status;
320  CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
321  rqb->rqb_bits[RQB_WORD(pri)],
322  rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
323  RQB_BIT(pri), RQB_WORD(pri));
324  rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
325 }
326 
327 /*
328  * Add the thread to the queue specified by its priority, and set the
329  * corresponding status bit.
330  */
331 void
332 runq_add(struct runq *rq, struct thread *td, int flags)
333 {
334  struct rqhead *rqh;
335  int pri;
336 
337  pri = td->td_priority / RQ_PPQ;
338  td->td_rqindex = pri;
339  runq_setbit(rq, pri);
340  rqh = &rq->rq_queues[pri];
341  CTR4(KTR_RUNQ, "runq_add: td=%p pri=%d %d rqh=%p",
342  td, td->td_priority, pri, rqh);
343  if (flags & SRQ_PREEMPTED) {
344  TAILQ_INSERT_HEAD(rqh, td, td_runq);
345  } else {
346  TAILQ_INSERT_TAIL(rqh, td, td_runq);
347  }
348 }
349 
350 void
351 runq_add_pri(struct runq *rq, struct thread *td, u_char pri, int flags)
352 {
353  struct rqhead *rqh;
354 
355  KASSERT(pri < RQ_NQS, ("runq_add_pri: %d out of range", pri));
356  td->td_rqindex = pri;
357  runq_setbit(rq, pri);
358  rqh = &rq->rq_queues[pri];
359  CTR4(KTR_RUNQ, "runq_add_pri: td=%p pri=%d idx=%d rqh=%p",
360  td, td->td_priority, pri, rqh);
361  if (flags & SRQ_PREEMPTED) {
362  TAILQ_INSERT_HEAD(rqh, td, td_runq);
363  } else {
364  TAILQ_INSERT_TAIL(rqh, td, td_runq);
365  }
366 }
367 /*
368  * Return true if there are runnable processes of any priority on the run
369  * queue, false otherwise. Has no side effects, does not modify the run
370  * queue structure.
371  */
372 int
373 runq_check(struct runq *rq)
374 {
375  struct rqbits *rqb;
376  int i;
377 
378  rqb = &rq->rq_status;
379  for (i = 0; i < RQB_LEN; i++)
380  if (rqb->rqb_bits[i]) {
381  CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
382  rqb->rqb_bits[i], i);
383  return (1);
384  }
385  CTR0(KTR_RUNQ, "runq_check: empty");
386 
387  return (0);
388 }
389 
390 /*
391  * Find the highest priority process on the run queue.
392  */
393 struct thread *
394 runq_choose_fuzz(struct runq *rq, int fuzz)
395 {
396  struct rqhead *rqh;
397  struct thread *td;
398  int pri;
399 
400  while ((pri = runq_findbit(rq)) != -1) {
401  rqh = &rq->rq_queues[pri];
402  /* fuzz == 1 is normal.. 0 or less are ignored */
403  if (fuzz > 1) {
404  /*
405  * In the first couple of entries, check if
406  * there is one for our CPU as a preference.
407  */
408  int count = fuzz;
409  int cpu = PCPU_GET(cpuid);
410  struct thread *td2;
411  td2 = td = TAILQ_FIRST(rqh);
412 
413  while (count-- && td2) {
414  if (td2->td_lastcpu == cpu) {
415  td = td2;
416  break;
417  }
418  td2 = TAILQ_NEXT(td2, td_runq);
419  }
420  } else
421  td = TAILQ_FIRST(rqh);
422  KASSERT(td != NULL, ("runq_choose_fuzz: no proc on busy queue"));
423  CTR3(KTR_RUNQ,
424  "runq_choose_fuzz: pri=%d thread=%p rqh=%p", pri, td, rqh);
425  return (td);
426  }
427  CTR1(KTR_RUNQ, "runq_choose_fuzz: idleproc pri=%d", pri);
428 
429  return (NULL);
430 }
431 
432 /*
433  * Find the highest priority process on the run queue.
434  */
435 struct thread *
436 runq_choose(struct runq *rq)
437 {
438  struct rqhead *rqh;
439  struct thread *td;
440  int pri;
441 
442  while ((pri = runq_findbit(rq)) != -1) {
443  rqh = &rq->rq_queues[pri];
444  td = TAILQ_FIRST(rqh);
445  KASSERT(td != NULL, ("runq_choose: no thread on busy queue"));
446  CTR3(KTR_RUNQ,
447  "runq_choose: pri=%d thread=%p rqh=%p", pri, td, rqh);
448  return (td);
449  }
450  CTR1(KTR_RUNQ, "runq_choose: idlethread pri=%d", pri);
451 
452  return (NULL);
453 }
454 
455 struct thread *
456 runq_choose_from(struct runq *rq, u_char idx)
457 {
458  struct rqhead *rqh;
459  struct thread *td;
460  int pri;
461 
462  if ((pri = runq_findbit_from(rq, idx)) != -1) {
463  rqh = &rq->rq_queues[pri];
464  td = TAILQ_FIRST(rqh);
465  KASSERT(td != NULL, ("runq_choose: no thread on busy queue"));
466  CTR4(KTR_RUNQ,
467  "runq_choose_from: pri=%d thread=%p idx=%d rqh=%p",
468  pri, td, td->td_rqindex, rqh);
469  return (td);
470  }
471  CTR1(KTR_RUNQ, "runq_choose_from: idlethread pri=%d", pri);
472 
473  return (NULL);
474 }
475 /*
476  * Remove the thread from the queue specified by its priority, and clear the
477  * corresponding status bit if the queue becomes empty.
478  * Caller must set state afterwards.
479  */
480 void
481 runq_remove(struct runq *rq, struct thread *td)
482 {
483 
484  runq_remove_idx(rq, td, NULL);
485 }
486 
487 void
488 runq_remove_idx(struct runq *rq, struct thread *td, u_char *idx)
489 {
490  struct rqhead *rqh;
491  u_char pri;
492 
493  KASSERT(td->td_flags & TDF_INMEM,
494  ("runq_remove_idx: thread swapped out"));
495  pri = td->td_rqindex;
496  KASSERT(pri < RQ_NQS, ("runq_remove_idx: Invalid index %d\n", pri));
497  rqh = &rq->rq_queues[pri];
498  CTR4(KTR_RUNQ, "runq_remove_idx: td=%p, pri=%d %d rqh=%p",
499  td, td->td_priority, pri, rqh);
500  TAILQ_REMOVE(rqh, td, td_runq);
501  if (TAILQ_EMPTY(rqh)) {
502  CTR0(KTR_RUNQ, "runq_remove_idx: empty");
503  runq_clrbit(rq, pri);
504  if (idx != NULL && *idx == pri)
505  *idx = (pri + 1) % RQ_NQS;
506  }
507 }
void runq_add(struct runq *rq, struct thread *td, int flags)
Definition: kern_switch.c:332
void critical_exit(void)
Definition: kern_switch.c:192
static SYSCTL_NODE(_debug, OID_AUTO, cpufreq, CTLFLAG_RD, NULL,"cpufreq debugging")
const char * panicstr
static int kern_sched_preemption
Definition: kern_switch.c:71
struct thread * choosethread(void)
Definition: kern_switch.c:154
struct thread * sched_choose(void)
Definition: sched_4bsd.c:1441
void runq_remove_idx(struct runq *rq, struct thread *td, u_char *idx)
Definition: kern_switch.c:488
int runq_check(struct runq *rq)
Definition: kern_switch.c:373
void mi_switch(int flags, struct thread *newtd)
Definition: kern_synch.c:422
static __inline void runq_clrbit(struct runq *rq, int pri)
Definition: kern_switch.c:243
struct thread * runq_choose_from(struct runq *rq, u_char idx)
Definition: kern_switch.c:456
static struct runq runq
Definition: sched_4bsd.c:157
void runq_add_pri(struct runq *rq, struct thread *td, u_char pri, int flags)
Definition: kern_switch.c:351
void runq_init(struct runq *rq)
Definition: kern_switch.c:229
SYSCTL_INT(_kern_sched, OID_AUTO, preemption, CTLFLAG_RD,&kern_sched_preemption, 0,"Kernel preemption enabled")
struct thread * runq_choose(struct runq *rq)
Definition: kern_switch.c:436
static __inline int runq_findbit_from(struct runq *rq, u_char pri)
Definition: kern_switch.c:279
int mask
Definition: subr_acl_nfs4.c:67
METHOD int suspend
This is called by the power-management subsystem when a suspend has been requested by the user or by ...
Definition: device_if.m:268
int sysctl_handle_int(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:986
CTASSERT((RQB_BPW *RQB_LEN)==RQ_NQS)
void runq_remove(struct runq *rq, struct thread *td)
Definition: kern_switch.c:481
SYSCTL_PROC(_kern, OID_AUTO, acct_chkfreq, CTLTYPE_INT|CTLFLAG_RW,&acctchkfreq, 0, sysctl_acct_chkfreq,"I","frequency for checking the free space")
struct thread * runq_choose_fuzz(struct runq *rq, int fuzz)
Definition: kern_switch.c:394
__FBSDID("$BSDSUniX$")
static __inline int runq_findbit(struct runq *rq)
Definition: kern_switch.c:260
int kdb_active
Definition: subr_kdb.c:53
static DPCPU_DEFINE(int, pcputicks)
static __inline void runq_setbit(struct runq *rq, int pri)
Definition: kern_switch.c:315
#define KTR_CRITICAL
Definition: kern_switch.c:52
void critical_enter(void)
Definition: kern_switch.c:181
int * count
Definition: cpufreq_if.m:63