FreeBSD kernel kern code
kern_resource.c
Go to the documentation of this file.
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993
3  * The Regents of the University of California. All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  * notice, this list of conditions and the following disclaimer in the
17  * documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  * may be used to endorse or promote products derived from this software
20  * without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$BSDSUniX$");
39 
40 #include "opt_compat.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sysproto.h>
45 #include <sys/file.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mutex.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/refcount.h>
53 #include <sys/racct.h>
54 #include <sys/resourcevar.h>
55 #include <sys/rwlock.h>
56 #include <sys/sched.h>
57 #include <sys/sx.h>
58 #include <sys/syscallsubr.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysent.h>
61 #include <sys/time.h>
62 #include <sys/umtx.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/pmap.h>
67 #include <vm/vm_map.h>
68 
69 
70 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
71 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
72 #define UIHASH(uid) (&uihashtbl[(uid) & uihash])
73 static struct rwlock uihashtbl_lock;
74 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
75 static u_long uihash; /* size of hash table - 1 */
76 
77 static void calcru1(struct proc *p, struct rusage_ext *ruxp,
78  struct timeval *up, struct timeval *sp);
79 static int donice(struct thread *td, struct proc *chgp, int n);
80 static struct uidinfo *uilookup(uid_t uid);
81 static void ruxagg_locked(struct rusage_ext *rux, struct thread *td);
82 
83 /*
84  * Resource controls and accounting.
85  */
86 #ifndef _SYS_SYSPROTO_H_
87 struct getpriority_args {
88  int which;
89  int who;
90 };
91 #endif
92 int
94  struct thread *td;
95  register struct getpriority_args *uap;
96 {
97  struct proc *p;
98  struct pgrp *pg;
99  int error, low;
100 
101  error = 0;
102  low = PRIO_MAX + 1;
103  switch (uap->which) {
104 
105  case PRIO_PROCESS:
106  if (uap->who == 0)
107  low = td->td_proc->p_nice;
108  else {
109  p = pfind(uap->who);
110  if (p == NULL)
111  break;
112  if (p_cansee(td, p) == 0)
113  low = p->p_nice;
114  PROC_UNLOCK(p);
115  }
116  break;
117 
118  case PRIO_PGRP:
119  sx_slock(&proctree_lock);
120  if (uap->who == 0) {
121  pg = td->td_proc->p_pgrp;
122  PGRP_LOCK(pg);
123  } else {
124  pg = pgfind(uap->who);
125  if (pg == NULL) {
126  sx_sunlock(&proctree_lock);
127  break;
128  }
129  }
130  sx_sunlock(&proctree_lock);
131  LIST_FOREACH(p, &pg->pg_members, p_pglist) {
132  PROC_LOCK(p);
133  if (p->p_state == PRS_NORMAL &&
134  p_cansee(td, p) == 0) {
135  if (p->p_nice < low)
136  low = p->p_nice;
137  }
138  PROC_UNLOCK(p);
139  }
140  PGRP_UNLOCK(pg);
141  break;
142 
143  case PRIO_USER:
144  if (uap->who == 0)
145  uap->who = td->td_ucred->cr_uid;
146  sx_slock(&allproc_lock);
147  FOREACH_PROC_IN_SYSTEM(p) {
148  PROC_LOCK(p);
149  if (p->p_state == PRS_NORMAL &&
150  p_cansee(td, p) == 0 &&
151  p->p_ucred->cr_uid == uap->who) {
152  if (p->p_nice < low)
153  low = p->p_nice;
154  }
155  PROC_UNLOCK(p);
156  }
157  sx_sunlock(&allproc_lock);
158  break;
159 
160  default:
161  error = EINVAL;
162  break;
163  }
164  if (low == PRIO_MAX + 1 && error == 0)
165  error = ESRCH;
166  td->td_retval[0] = low;
167  return (error);
168 }
169 
170 #ifndef _SYS_SYSPROTO_H_
172  int which;
173  int who;
174  int prio;
175 };
176 #endif
177 int
179  struct thread *td;
180  struct setpriority_args *uap;
181 {
182  struct proc *curp, *p;
183  struct pgrp *pg;
184  int found = 0, error = 0;
185 
186  curp = td->td_proc;
187  switch (uap->which) {
188  case PRIO_PROCESS:
189  if (uap->who == 0) {
190  PROC_LOCK(curp);
191  error = donice(td, curp, uap->prio);
192  PROC_UNLOCK(curp);
193  } else {
194  p = pfind(uap->who);
195  if (p == NULL)
196  break;
197  error = p_cansee(td, p);
198  if (error == 0)
199  error = donice(td, p, uap->prio);
200  PROC_UNLOCK(p);
201  }
202  found++;
203  break;
204 
205  case PRIO_PGRP:
206  sx_slock(&proctree_lock);
207  if (uap->who == 0) {
208  pg = curp->p_pgrp;
209  PGRP_LOCK(pg);
210  } else {
211  pg = pgfind(uap->who);
212  if (pg == NULL) {
213  sx_sunlock(&proctree_lock);
214  break;
215  }
216  }
217  sx_sunlock(&proctree_lock);
218  LIST_FOREACH(p, &pg->pg_members, p_pglist) {
219  PROC_LOCK(p);
220  if (p->p_state == PRS_NORMAL &&
221  p_cansee(td, p) == 0) {
222  error = donice(td, p, uap->prio);
223  found++;
224  }
225  PROC_UNLOCK(p);
226  }
227  PGRP_UNLOCK(pg);
228  break;
229 
230  case PRIO_USER:
231  if (uap->who == 0)
232  uap->who = td->td_ucred->cr_uid;
233  sx_slock(&allproc_lock);
234  FOREACH_PROC_IN_SYSTEM(p) {
235  PROC_LOCK(p);
236  if (p->p_state == PRS_NORMAL &&
237  p->p_ucred->cr_uid == uap->who &&
238  p_cansee(td, p) == 0) {
239  error = donice(td, p, uap->prio);
240  found++;
241  }
242  PROC_UNLOCK(p);
243  }
244  sx_sunlock(&allproc_lock);
245  break;
246 
247  default:
248  error = EINVAL;
249  break;
250  }
251  if (found == 0 && error == 0)
252  error = ESRCH;
253  return (error);
254 }
255 
256 /*
257  * Set "nice" for a (whole) process.
258  */
259 static int
260 donice(struct thread *td, struct proc *p, int n)
261 {
262  int error;
263 
264  PROC_LOCK_ASSERT(p, MA_OWNED);
265  if ((error = p_cansched(td, p)))
266  return (error);
267  if (n > PRIO_MAX)
268  n = PRIO_MAX;
269  if (n < PRIO_MIN)
270  n = PRIO_MIN;
271  if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0)
272  return (EACCES);
273  sched_nice(p, n);
274  return (0);
275 }
276 
278 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW,
279  &unprivileged_idprio, 0, "Allow non-root users to set an idle priority");
280 
281 /*
282  * Set realtime priority for LWP.
283  */
284 #ifndef _SYS_SYSPROTO_H_
286  int function;
287  lwpid_t lwpid;
288  struct rtprio *rtp;
289 };
290 #endif
291 int
292 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap)
293 {
294  struct proc *p;
295  struct rtprio rtp;
296  struct thread *td1;
297  int cierror, error;
298 
299  /* Perform copyin before acquiring locks if needed. */
300  if (uap->function == RTP_SET)
301  cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
302  else
303  cierror = 0;
304 
305  if (uap->lwpid == 0 || uap->lwpid == td->td_tid) {
306  p = td->td_proc;
307  td1 = td;
308  PROC_LOCK(p);
309  } else {
310  /* Only look up thread in current process */
311  td1 = tdfind(uap->lwpid, curproc->p_pid);
312  if (td1 == NULL)
313  return (ESRCH);
314  p = td1->td_proc;
315  }
316 
317  switch (uap->function) {
318  case RTP_LOOKUP:
319  if ((error = p_cansee(td, p)))
320  break;
321  pri_to_rtp(td1, &rtp);
322  PROC_UNLOCK(p);
323  return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
324  case RTP_SET:
325  if ((error = p_cansched(td, p)) || (error = cierror))
326  break;
327 
328  /* Disallow setting rtprio in most cases if not superuser. */
329 
330  /*
331  * Realtime priority has to be restricted for reasons which
332  * should be obvious. However, for idleprio processes, there is
333  * a potential for system deadlock if an idleprio process gains
334  * a lock on a resource that other processes need (and the
335  * idleprio process can't run due to a CPU-bound normal
336  * process). Fix me! XXX
337  *
338  * This problem is not only related to idleprio process.
339  * A user level program can obtain a file lock and hold it
340  * indefinitely. Additionally, without idleprio processes it is
341  * still conceivable that a program with low priority will never
342  * get to run. In short, allowing this feature might make it
343  * easier to lock a resource indefinitely, but it is not the
344  * only thing that makes it possible.
345  */
346  if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
347  (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
348  unprivileged_idprio == 0)) {
349  error = priv_check(td, PRIV_SCHED_RTPRIO);
350  if (error)
351  break;
352  }
353  error = rtp_to_pri(&rtp, td1);
354  break;
355  default:
356  error = EINVAL;
357  break;
358  }
359  PROC_UNLOCK(p);
360  return (error);
361 }
362 
363 /*
364  * Set realtime priority.
365  */
366 #ifndef _SYS_SYSPROTO_H_
367 struct rtprio_args {
368  int function;
369  pid_t pid;
370  struct rtprio *rtp;
371 };
372 #endif
373 int
374 sys_rtprio(td, uap)
375  struct thread *td; /* curthread */
376  register struct rtprio_args *uap;
377 {
378  struct proc *p;
379  struct thread *tdp;
380  struct rtprio rtp;
381  int cierror, error;
382 
383  /* Perform copyin before acquiring locks if needed. */
384  if (uap->function == RTP_SET)
385  cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
386  else
387  cierror = 0;
388 
389  if (uap->pid == 0) {
390  p = td->td_proc;
391  PROC_LOCK(p);
392  } else {
393  p = pfind(uap->pid);
394  if (p == NULL)
395  return (ESRCH);
396  }
397 
398  switch (uap->function) {
399  case RTP_LOOKUP:
400  if ((error = p_cansee(td, p)))
401  break;
402  /*
403  * Return OUR priority if no pid specified,
404  * or if one is, report the highest priority
405  * in the process. There isn't much more you can do as
406  * there is only room to return a single priority.
407  * Note: specifying our own pid is not the same
408  * as leaving it zero.
409  */
410  if (uap->pid == 0) {
411  pri_to_rtp(td, &rtp);
412  } else {
413  struct rtprio rtp2;
414 
415  rtp.type = RTP_PRIO_IDLE;
416  rtp.prio = RTP_PRIO_MAX;
417  FOREACH_THREAD_IN_PROC(p, tdp) {
418  pri_to_rtp(tdp, &rtp2);
419  if (rtp2.type < rtp.type ||
420  (rtp2.type == rtp.type &&
421  rtp2.prio < rtp.prio)) {
422  rtp.type = rtp2.type;
423  rtp.prio = rtp2.prio;
424  }
425  }
426  }
427  PROC_UNLOCK(p);
428  return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
429  case RTP_SET:
430  if ((error = p_cansched(td, p)) || (error = cierror))
431  break;
432 
433  /*
434  * Disallow setting rtprio in most cases if not superuser.
435  * See the comment in sys_rtprio_thread about idprio
436  * threads holding a lock.
437  */
438  if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
439  (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
441  error = priv_check(td, PRIV_SCHED_RTPRIO);
442  if (error)
443  break;
444  }
445 
446  /*
447  * If we are setting our own priority, set just our
448  * thread but if we are doing another process,
449  * do all the threads on that process. If we
450  * specify our own pid we do the latter.
451  */
452  if (uap->pid == 0) {
453  error = rtp_to_pri(&rtp, td);
454  } else {
455  FOREACH_THREAD_IN_PROC(p, td) {
456  if ((error = rtp_to_pri(&rtp, td)) != 0)
457  break;
458  }
459  }
460  break;
461  default:
462  error = EINVAL;
463  break;
464  }
465  PROC_UNLOCK(p);
466  return (error);
467 }
468 
469 int
470 rtp_to_pri(struct rtprio *rtp, struct thread *td)
471 {
472  u_char newpri;
473  u_char oldpri;
474 
475  switch (RTP_PRIO_BASE(rtp->type)) {
476  case RTP_PRIO_REALTIME:
477  if (rtp->prio > RTP_PRIO_MAX)
478  return (EINVAL);
479  newpri = PRI_MIN_REALTIME + rtp->prio;
480  break;
481  case RTP_PRIO_NORMAL:
482  if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE))
483  return (EINVAL);
484  newpri = PRI_MIN_TIMESHARE + rtp->prio;
485  break;
486  case RTP_PRIO_IDLE:
487  if (rtp->prio > RTP_PRIO_MAX)
488  return (EINVAL);
489  newpri = PRI_MIN_IDLE + rtp->prio;
490  break;
491  default:
492  return (EINVAL);
493  }
494 
495  thread_lock(td);
496  sched_class(td, rtp->type); /* XXX fix */
497  oldpri = td->td_user_pri;
498  sched_user_prio(td, newpri);
499  if (td->td_user_pri != oldpri && (td == curthread ||
500  td->td_priority == oldpri || td->td_user_pri <= PRI_MAX_REALTIME))
501  sched_prio(td, td->td_user_pri);
502  if (TD_ON_UPILOCK(td) && oldpri != newpri) {
503  critical_enter();
504  thread_unlock(td);
505  umtx_pi_adjust(td, oldpri);
506  critical_exit();
507  } else
508  thread_unlock(td);
509  return (0);
510 }
511 
512 void
513 pri_to_rtp(struct thread *td, struct rtprio *rtp)
514 {
515 
516  thread_lock(td);
517  switch (PRI_BASE(td->td_pri_class)) {
518  case PRI_REALTIME:
519  rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME;
520  break;
521  case PRI_TIMESHARE:
522  rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE;
523  break;
524  case PRI_IDLE:
525  rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE;
526  break;
527  default:
528  break;
529  }
530  rtp->type = td->td_pri_class;
531  thread_unlock(td);
532 }
533 
534 #if defined(COMPAT_43)
535 #ifndef _SYS_SYSPROTO_H_
536 struct osetrlimit_args {
537  u_int which;
538  struct orlimit *rlp;
539 };
540 #endif
541 int
542 osetrlimit(td, uap)
543  struct thread *td;
544  register struct osetrlimit_args *uap;
545 {
546  struct orlimit olim;
547  struct rlimit lim;
548  int error;
549 
550  if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
551  return (error);
552  lim.rlim_cur = olim.rlim_cur;
553  lim.rlim_max = olim.rlim_max;
554  error = kern_setrlimit(td, uap->which, &lim);
555  return (error);
556 }
557 
558 #ifndef _SYS_SYSPROTO_H_
559 struct ogetrlimit_args {
560  u_int which;
561  struct orlimit *rlp;
562 };
563 #endif
564 int
565 ogetrlimit(td, uap)
566  struct thread *td;
567  register struct ogetrlimit_args *uap;
568 {
569  struct orlimit olim;
570  struct rlimit rl;
571  struct proc *p;
572  int error;
573 
574  if (uap->which >= RLIM_NLIMITS)
575  return (EINVAL);
576  p = td->td_proc;
577  PROC_LOCK(p);
578  lim_rlimit(p, uap->which, &rl);
579  PROC_UNLOCK(p);
580 
581  /*
582  * XXX would be more correct to convert only RLIM_INFINITY to the
583  * old RLIM_INFINITY and fail with EOVERFLOW for other larger
584  * values. Most 64->32 and 32->16 conversions, including not
585  * unimportant ones of uids are even more broken than what we
586  * do here (they blindly truncate). We don't do this correctly
587  * here since we have little experience with EOVERFLOW yet.
588  * Elsewhere, getuid() can't fail...
589  */
590  olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
591  olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
592  error = copyout(&olim, uap->rlp, sizeof(olim));
593  return (error);
594 }
595 #endif /* COMPAT_43 */
596 
597 #ifndef _SYS_SYSPROTO_H_
599  u_int which;
600  struct rlimit *rlp;
601 };
602 #endif
603 int
605  struct thread *td;
606  register struct __setrlimit_args *uap;
607 {
608  struct rlimit alim;
609  int error;
610 
611  if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
612  return (error);
613  error = kern_setrlimit(td, uap->which, &alim);
614  return (error);
615 }
616 
617 static void
618 lim_cb(void *arg)
619 {
620  struct rlimit rlim;
621  struct thread *td;
622  struct proc *p;
623 
624  p = arg;
625  PROC_LOCK_ASSERT(p, MA_OWNED);
626  /*
627  * Check if the process exceeds its cpu resource allocation. If
628  * it reaches the max, arrange to kill the process in ast().
629  */
630  if (p->p_cpulimit == RLIM_INFINITY)
631  return;
632  PROC_SLOCK(p);
633  FOREACH_THREAD_IN_PROC(p, td) {
634  ruxagg(p, td);
635  }
636  PROC_SUNLOCK(p);
637  if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) {
638  lim_rlimit(p, RLIMIT_CPU, &rlim);
639  if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) {
640  killproc(p, "exceeded maximum CPU limit");
641  } else {
642  if (p->p_cpulimit < rlim.rlim_max)
643  p->p_cpulimit += 5;
644  kern_psignal(p, SIGXCPU);
645  }
646  }
647  if ((p->p_flag & P_WEXIT) == 0)
648  callout_reset(&p->p_limco, hz, lim_cb, p);
649 }
650 
651 int
652 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp)
653 {
654 
655  return (kern_proc_setrlimit(td, td->td_proc, which, limp));
656 }
657 
658 int
659 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which,
660  struct rlimit *limp)
661 {
662  struct plimit *newlim, *oldlim;
663  register struct rlimit *alimp;
664  struct rlimit oldssiz;
665  int error;
666 
667  if (which >= RLIM_NLIMITS)
668  return (EINVAL);
669 
670  /*
671  * Preserve historical bugs by treating negative limits as unsigned.
672  */
673  if (limp->rlim_cur < 0)
674  limp->rlim_cur = RLIM_INFINITY;
675  if (limp->rlim_max < 0)
676  limp->rlim_max = RLIM_INFINITY;
677 
678  oldssiz.rlim_cur = 0;
679  newlim = lim_alloc();
680  PROC_LOCK(p);
681  oldlim = p->p_limit;
682  alimp = &oldlim->pl_rlimit[which];
683  if (limp->rlim_cur > alimp->rlim_max ||
684  limp->rlim_max > alimp->rlim_max)
685  if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) {
686  PROC_UNLOCK(p);
687  lim_free(newlim);
688  return (error);
689  }
690  if (limp->rlim_cur > limp->rlim_max)
691  limp->rlim_cur = limp->rlim_max;
692  lim_copy(newlim, oldlim);
693  alimp = &newlim->pl_rlimit[which];
694 
695  switch (which) {
696 
697  case RLIMIT_CPU:
698  if (limp->rlim_cur != RLIM_INFINITY &&
699  p->p_cpulimit == RLIM_INFINITY)
700  callout_reset(&p->p_limco, hz, lim_cb, p);
701  p->p_cpulimit = limp->rlim_cur;
702  break;
703  case RLIMIT_DATA:
704  if (limp->rlim_cur > maxdsiz)
705  limp->rlim_cur = maxdsiz;
706  if (limp->rlim_max > maxdsiz)
707  limp->rlim_max = maxdsiz;
708  break;
709 
710  case RLIMIT_STACK:
711  if (limp->rlim_cur > maxssiz)
712  limp->rlim_cur = maxssiz;
713  if (limp->rlim_max > maxssiz)
714  limp->rlim_max = maxssiz;
715  oldssiz = *alimp;
716  if (p->p_sysent->sv_fixlimit != NULL)
717  p->p_sysent->sv_fixlimit(&oldssiz,
718  RLIMIT_STACK);
719  break;
720 
721  case RLIMIT_NOFILE:
722  if (limp->rlim_cur > maxfilesperproc)
723  limp->rlim_cur = maxfilesperproc;
724  if (limp->rlim_max > maxfilesperproc)
725  limp->rlim_max = maxfilesperproc;
726  break;
727 
728  case RLIMIT_NPROC:
729  if (limp->rlim_cur > maxprocperuid)
730  limp->rlim_cur = maxprocperuid;
731  if (limp->rlim_max > maxprocperuid)
732  limp->rlim_max = maxprocperuid;
733  if (limp->rlim_cur < 1)
734  limp->rlim_cur = 1;
735  if (limp->rlim_max < 1)
736  limp->rlim_max = 1;
737  break;
738  }
739  if (p->p_sysent->sv_fixlimit != NULL)
740  p->p_sysent->sv_fixlimit(limp, which);
741  *alimp = *limp;
742  p->p_limit = newlim;
743  PROC_UNLOCK(p);
744  lim_free(oldlim);
745 
746  if (which == RLIMIT_STACK) {
747  /*
748  * Stack is allocated to the max at exec time with only
749  * "rlim_cur" bytes accessible. If stack limit is going
750  * up make more accessible, if going down make inaccessible.
751  */
752  if (limp->rlim_cur != oldssiz.rlim_cur) {
753  vm_offset_t addr;
754  vm_size_t size;
755  vm_prot_t prot;
756 
757  if (limp->rlim_cur > oldssiz.rlim_cur) {
758  prot = p->p_sysent->sv_stackprot;
759  size = limp->rlim_cur - oldssiz.rlim_cur;
760  addr = p->p_sysent->sv_usrstack -
761  limp->rlim_cur;
762  } else {
763  prot = VM_PROT_NONE;
764  size = oldssiz.rlim_cur - limp->rlim_cur;
765  addr = p->p_sysent->sv_usrstack -
766  oldssiz.rlim_cur;
767  }
768  addr = trunc_page(addr);
769  size = round_page(size);
770  (void)vm_map_protect(&p->p_vmspace->vm_map,
771  addr, addr + size, prot, FALSE);
772  }
773  }
774 
775  return (0);
776 }
777 
778 #ifndef _SYS_SYSPROTO_H_
780  u_int which;
781  struct rlimit *rlp;
782 };
783 #endif
784 /* ARGSUSED */
785 int
787  struct thread *td;
788  register struct __getrlimit_args *uap;
789 {
790  struct rlimit rlim;
791  struct proc *p;
792  int error;
793 
794  if (uap->which >= RLIM_NLIMITS)
795  return (EINVAL);
796  p = td->td_proc;
797  PROC_LOCK(p);
798  lim_rlimit(p, uap->which, &rlim);
799  PROC_UNLOCK(p);
800  error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
801  return (error);
802 }
803 
804 /*
805  * Transform the running time and tick information for children of proc p
806  * into user and system time usage.
807  */
808 void
809 calccru(p, up, sp)
810  struct proc *p;
811  struct timeval *up;
812  struct timeval *sp;
813 {
814 
815  PROC_LOCK_ASSERT(p, MA_OWNED);
816  calcru1(p, &p->p_crux, up, sp);
817 }
818 
819 /*
820  * Transform the running time and tick information in proc p into user
821  * and system time usage. If appropriate, include the current time slice
822  * on this CPU.
823  */
824 void
825 calcru(struct proc *p, struct timeval *up, struct timeval *sp)
826 {
827  struct thread *td;
828  uint64_t runtime, u;
829 
830  PROC_LOCK_ASSERT(p, MA_OWNED);
831  PROC_SLOCK_ASSERT(p, MA_OWNED);
832  /*
833  * If we are getting stats for the current process, then add in the
834  * stats that this thread has accumulated in its current time slice.
835  * We reset the thread and CPU state as if we had performed a context
836  * switch right here.
837  */
838  td = curthread;
839  if (td->td_proc == p) {
840  u = cpu_ticks();
841  runtime = u - PCPU_GET(switchtime);
842  td->td_runtime += runtime;
843  td->td_incruntime += runtime;
844  PCPU_SET(switchtime, u);
845  }
846  /* Make sure the per-thread stats are current. */
847  FOREACH_THREAD_IN_PROC(p, td) {
848  if (td->td_incruntime == 0)
849  continue;
850  ruxagg(p, td);
851  }
852  calcru1(p, &p->p_rux, up, sp);
853 }
854 
855 /* Collect resource usage for a single thread. */
856 void
857 rufetchtd(struct thread *td, struct rusage *ru)
858 {
859  struct proc *p;
860  uint64_t runtime, u;
861 
862  p = td->td_proc;
863  PROC_SLOCK_ASSERT(p, MA_OWNED);
864  THREAD_LOCK_ASSERT(td, MA_OWNED);
865  /*
866  * If we are getting stats for the current thread, then add in the
867  * stats that this thread has accumulated in its current time slice.
868  * We reset the thread and CPU state as if we had performed a context
869  * switch right here.
870  */
871  if (td == curthread) {
872  u = cpu_ticks();
873  runtime = u - PCPU_GET(switchtime);
874  td->td_runtime += runtime;
875  td->td_incruntime += runtime;
876  PCPU_SET(switchtime, u);
877  }
878  ruxagg(p, td);
879  *ru = td->td_ru;
880  calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime);
881 }
882 
883 static void
884 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
885  struct timeval *sp)
886 {
887  /* {user, system, interrupt, total} {ticks, usec}: */
888  uint64_t ut, uu, st, su, it, tt, tu;
889 
890  ut = ruxp->rux_uticks;
891  st = ruxp->rux_sticks;
892  it = ruxp->rux_iticks;
893  tt = ut + st + it;
894  if (tt == 0) {
895  /* Avoid divide by zero */
896  st = 1;
897  tt = 1;
898  }
899  tu = cputick2usec(ruxp->rux_runtime);
900  if ((int64_t)tu < 0) {
901  /* XXX: this should be an assert /phk */
902  printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
903  (intmax_t)tu, p->p_pid, p->p_comm);
904  tu = ruxp->rux_tu;
905  }
906 
907  if (tu >= ruxp->rux_tu) {
908  /*
909  * The normal case, time increased.
910  * Enforce monotonicity of bucketed numbers.
911  */
912  uu = (tu * ut) / tt;
913  if (uu < ruxp->rux_uu)
914  uu = ruxp->rux_uu;
915  su = (tu * st) / tt;
916  if (su < ruxp->rux_su)
917  su = ruxp->rux_su;
918  } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
919  /*
920  * When we calibrate the cputicker, it is not uncommon to
921  * see the presumably fixed frequency increase slightly over
922  * time as a result of thermal stabilization and NTP
923  * discipline (of the reference clock). We therefore ignore
924  * a bit of backwards slop because we expect to catch up
925  * shortly. We use a 3 microsecond limit to catch low
926  * counts and a 1% limit for high counts.
927  */
928  uu = ruxp->rux_uu;
929  su = ruxp->rux_su;
930  tu = ruxp->rux_tu;
931  } else { /* tu < ruxp->rux_tu */
932  /*
933  * What happened here was likely that a laptop, which ran at
934  * a reduced clock frequency at boot, kicked into high gear.
935  * The wisdom of spamming this message in that case is
936  * dubious, but it might also be indicative of something
937  * serious, so lets keep it and hope laptops can be made
938  * more truthful about their CPU speed via ACPI.
939  */
940  printf("calcru: runtime went backwards from %ju usec "
941  "to %ju usec for pid %d (%s)\n",
942  (uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
943  p->p_pid, p->p_comm);
944  uu = (tu * ut) / tt;
945  su = (tu * st) / tt;
946  }
947 
948  ruxp->rux_uu = uu;
949  ruxp->rux_su = su;
950  ruxp->rux_tu = tu;
951 
952  up->tv_sec = uu / 1000000;
953  up->tv_usec = uu % 1000000;
954  sp->tv_sec = su / 1000000;
955  sp->tv_usec = su % 1000000;
956 }
957 
958 #ifndef _SYS_SYSPROTO_H_
960  int who;
961  struct rusage *rusage;
962 };
963 #endif
964 int
966  register struct thread *td;
967  register struct getrusage_args *uap;
968 {
969  struct rusage ru;
970  int error;
971 
972  error = kern_getrusage(td, uap->who, &ru);
973  if (error == 0)
974  error = copyout(&ru, uap->rusage, sizeof(struct rusage));
975  return (error);
976 }
977 
978 int
979 kern_getrusage(struct thread *td, int who, struct rusage *rup)
980 {
981  struct proc *p;
982  int error;
983 
984  error = 0;
985  p = td->td_proc;
986  PROC_LOCK(p);
987  switch (who) {
988  case RUSAGE_SELF:
989  rufetchcalc(p, rup, &rup->ru_utime,
990  &rup->ru_stime);
991  break;
992 
993  case RUSAGE_CHILDREN:
994  *rup = p->p_stats->p_cru;
995  calccru(p, &rup->ru_utime, &rup->ru_stime);
996  break;
997 
998  case RUSAGE_THREAD:
999  PROC_SLOCK(p);
1000  thread_lock(td);
1001  rufetchtd(td, rup);
1002  thread_unlock(td);
1003  PROC_SUNLOCK(p);
1004  break;
1005 
1006  default:
1007  error = EINVAL;
1008  }
1009  PROC_UNLOCK(p);
1010  return (error);
1011 }
1012 
1013 void
1014 rucollect(struct rusage *ru, struct rusage *ru2)
1015 {
1016  long *ip, *ip2;
1017  int i;
1018 
1019  if (ru->ru_maxrss < ru2->ru_maxrss)
1020  ru->ru_maxrss = ru2->ru_maxrss;
1021  ip = &ru->ru_first;
1022  ip2 = &ru2->ru_first;
1023  for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
1024  *ip++ += *ip2++;
1025 }
1026 
1027 void
1028 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2,
1029  struct rusage_ext *rux2)
1030 {
1031 
1032  rux->rux_runtime += rux2->rux_runtime;
1033  rux->rux_uticks += rux2->rux_uticks;
1034  rux->rux_sticks += rux2->rux_sticks;
1035  rux->rux_iticks += rux2->rux_iticks;
1036  rux->rux_uu += rux2->rux_uu;
1037  rux->rux_su += rux2->rux_su;
1038  rux->rux_tu += rux2->rux_tu;
1039  rucollect(ru, ru2);
1040 }
1041 
1042 /*
1043  * Aggregate tick counts into the proc's rusage_ext.
1044  */
1045 static void
1046 ruxagg_locked(struct rusage_ext *rux, struct thread *td)
1047 {
1048 
1049  THREAD_LOCK_ASSERT(td, MA_OWNED);
1050  PROC_SLOCK_ASSERT(td->td_proc, MA_OWNED);
1051  rux->rux_runtime += td->td_incruntime;
1052  rux->rux_uticks += td->td_uticks;
1053  rux->rux_sticks += td->td_sticks;
1054  rux->rux_iticks += td->td_iticks;
1055 }
1056 
1057 void
1058 ruxagg(struct proc *p, struct thread *td)
1059 {
1060 
1061  thread_lock(td);
1062  ruxagg_locked(&p->p_rux, td);
1063  ruxagg_locked(&td->td_rux, td);
1064  td->td_incruntime = 0;
1065  td->td_uticks = 0;
1066  td->td_iticks = 0;
1067  td->td_sticks = 0;
1068  thread_unlock(td);
1069 }
1070 
1071 /*
1072  * Update the rusage_ext structure and fetch a valid aggregate rusage
1073  * for proc p if storage for one is supplied.
1074  */
1075 void
1076 rufetch(struct proc *p, struct rusage *ru)
1077 {
1078  struct thread *td;
1079 
1080  PROC_SLOCK_ASSERT(p, MA_OWNED);
1081 
1082  *ru = p->p_ru;
1083  if (p->p_numthreads > 0) {
1084  FOREACH_THREAD_IN_PROC(p, td) {
1085  ruxagg(p, td);
1086  rucollect(ru, &td->td_ru);
1087  }
1088  }
1089 }
1090 
1091 /*
1092  * Atomically perform a rufetch and a calcru together.
1093  * Consumers, can safely assume the calcru is executed only once
1094  * rufetch is completed.
1095  */
1096 void
1097 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up,
1098  struct timeval *sp)
1099 {
1100 
1101  PROC_SLOCK(p);
1102  rufetch(p, ru);
1103  calcru(p, up, sp);
1104  PROC_SUNLOCK(p);
1105 }
1106 
1107 /*
1108  * Allocate a new resource limits structure and initialize its
1109  * reference count and mutex pointer.
1110  */
1111 struct plimit *
1113 {
1114  struct plimit *limp;
1115 
1116  limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
1117  refcount_init(&limp->pl_refcnt, 1);
1118  return (limp);
1119 }
1120 
1121 struct plimit *
1123  struct plimit *limp;
1124 {
1125 
1126  refcount_acquire(&limp->pl_refcnt);
1127  return (limp);
1128 }
1129 
1130 void
1131 lim_fork(struct proc *p1, struct proc *p2)
1132 {
1133  p2->p_limit = lim_hold(p1->p_limit);
1134  callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0);
1135  if (p1->p_cpulimit != RLIM_INFINITY)
1136  callout_reset(&p2->p_limco, hz, lim_cb, p2);
1137 }
1138 
1139 void
1141  struct plimit *limp;
1142 {
1143 
1144  KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
1145  if (refcount_release(&limp->pl_refcnt))
1146  free((void *)limp, M_PLIMIT);
1147 }
1148 
1149 /*
1150  * Make a copy of the plimit structure.
1151  * We share these structures copy-on-write after fork.
1152  */
1153 void
1154 lim_copy(dst, src)
1155  struct plimit *dst, *src;
1156 {
1157 
1158  KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
1159  bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
1160 }
1161 
1162 /*
1163  * Return the hard limit for a particular system resource. The
1164  * which parameter specifies the index into the rlimit array.
1165  */
1166 rlim_t
1167 lim_max(struct proc *p, int which)
1168 {
1169  struct rlimit rl;
1170 
1171  lim_rlimit(p, which, &rl);
1172  return (rl.rlim_max);
1173 }
1174 
1175 /*
1176  * Return the current (soft) limit for a particular system resource.
1177  * The which parameter which specifies the index into the rlimit array
1178  */
1179 rlim_t
1180 lim_cur(struct proc *p, int which)
1181 {
1182  struct rlimit rl;
1183 
1184  lim_rlimit(p, which, &rl);
1185  return (rl.rlim_cur);
1186 }
1187 
1188 /*
1189  * Return a copy of the entire rlimit structure for the system limit
1190  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
1191  */
1192 void
1193 lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
1194 {
1195 
1196  PROC_LOCK_ASSERT(p, MA_OWNED);
1197  KASSERT(which >= 0 && which < RLIM_NLIMITS,
1198  ("request for invalid resource limit"));
1199  *rlp = p->p_limit->pl_rlimit[which];
1200  if (p->p_sysent->sv_fixlimit != NULL)
1201  p->p_sysent->sv_fixlimit(rlp, which);
1202 }
1203 
1204 void
1206 {
1207 
1208  uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
1209  rw_init(&uihashtbl_lock, "uidinfo hash");
1210 }
1211 
1212 /*
1213  * Look up a uidinfo struct for the parameter uid.
1214  * uihashtbl_lock must be locked.
1215  */
1216 static struct uidinfo *
1218  uid_t uid;
1219 {
1220  struct uihashhead *uipp;
1221  struct uidinfo *uip;
1222 
1223  rw_assert(&uihashtbl_lock, RA_LOCKED);
1224  uipp = UIHASH(uid);
1225  LIST_FOREACH(uip, uipp, ui_hash)
1226  if (uip->ui_uid == uid)
1227  break;
1228 
1229  return (uip);
1230 }
1231 
1232 /*
1233  * Find or allocate a struct uidinfo for a particular uid.
1234  * Increase refcount on uidinfo struct returned.
1235  * uifree() should be called on a struct uidinfo when released.
1236  */
1237 struct uidinfo *
1239  uid_t uid;
1240 {
1241  struct uidinfo *old_uip, *uip;
1242 
1243  rw_rlock(&uihashtbl_lock);
1244  uip = uilookup(uid);
1245  if (uip == NULL) {
1246  rw_runlock(&uihashtbl_lock);
1247  uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
1248  racct_create(&uip->ui_racct);
1249  rw_wlock(&uihashtbl_lock);
1250  /*
1251  * There's a chance someone created our uidinfo while we
1252  * were in malloc and not holding the lock, so we have to
1253  * make sure we don't insert a duplicate uidinfo.
1254  */
1255  if ((old_uip = uilookup(uid)) != NULL) {
1256  /* Someone else beat us to it. */
1257  racct_destroy(&uip->ui_racct);
1258  free(uip, M_UIDINFO);
1259  uip = old_uip;
1260  } else {
1261  refcount_init(&uip->ui_ref, 0);
1262  uip->ui_uid = uid;
1263  mtx_init(&uip->ui_vmsize_mtx, "ui_vmsize", NULL,
1264  MTX_DEF);
1265  LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
1266  }
1267  }
1268  uihold(uip);
1269  rw_unlock(&uihashtbl_lock);
1270  return (uip);
1271 }
1272 
1273 /*
1274  * Place another refcount on a uidinfo struct.
1275  */
1276 void
1278  struct uidinfo *uip;
1279 {
1280 
1281  refcount_acquire(&uip->ui_ref);
1282 }
1283 
1284 /*-
1285  * Since uidinfo structs have a long lifetime, we use an
1286  * opportunistic refcounting scheme to avoid locking the lookup hash
1287  * for each release.
1288  *
1289  * If the refcount hits 0, we need to free the structure,
1290  * which means we need to lock the hash.
1291  * Optimal case:
1292  * After locking the struct and lowering the refcount, if we find
1293  * that we don't need to free, simply unlock and return.
1294  * Suboptimal case:
1295  * If refcount lowering results in need to free, bump the count
1296  * back up, lose the lock and acquire the locks in the proper
1297  * order to try again.
1298  */
1299 void
1301  struct uidinfo *uip;
1302 {
1303  int old;
1304 
1305  /* Prepare for optimal case. */
1306  old = uip->ui_ref;
1307  if (old > 1 && atomic_cmpset_int(&uip->ui_ref, old, old - 1))
1308  return;
1309 
1310  /* Prepare for suboptimal case. */
1311  rw_wlock(&uihashtbl_lock);
1312  if (refcount_release(&uip->ui_ref)) {
1313  racct_destroy(&uip->ui_racct);
1314  LIST_REMOVE(uip, ui_hash);
1315  rw_wunlock(&uihashtbl_lock);
1316  if (uip->ui_sbsize != 0)
1317  printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
1318  uip->ui_uid, uip->ui_sbsize);
1319  if (uip->ui_proccnt != 0)
1320  printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1321  uip->ui_uid, uip->ui_proccnt);
1322  if (uip->ui_vmsize != 0)
1323  printf("freeing uidinfo: uid = %d, swapuse = %lld\n",
1324  uip->ui_uid, (unsigned long long)uip->ui_vmsize);
1325  mtx_destroy(&uip->ui_vmsize_mtx);
1326  free(uip, M_UIDINFO);
1327  return;
1328  }
1329  /*
1330  * Someone added a reference between atomic_cmpset_int() and
1331  * rw_wlock(&uihashtbl_lock).
1332  */
1333  rw_wunlock(&uihashtbl_lock);
1334 }
1335 
1336 void
1337 ui_racct_foreach(void (*callback)(struct racct *racct,
1338  void *arg2, void *arg3), void *arg2, void *arg3)
1339 {
1340  struct uidinfo *uip;
1341  struct uihashhead *uih;
1342 
1343  rw_rlock(&uihashtbl_lock);
1344  for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) {
1345  LIST_FOREACH(uip, uih, ui_hash) {
1346  (callback)(uip->ui_racct, arg2, arg3);
1347  }
1348  }
1349  rw_runlock(&uihashtbl_lock);
1350 }
1351 
1352 /*
1353  * Change the count associated with number of processes
1354  * a given user is using. When 'max' is 0, don't enforce a limit
1355  */
1356 int
1357 chgproccnt(uip, diff, max)
1358  struct uidinfo *uip;
1359  int diff;
1360  rlim_t max;
1361 {
1362 
1363  /* Don't allow them to exceed max, but allow subtraction. */
1364  if (diff > 0 && max != 0) {
1365  if (atomic_fetchadd_long(&uip->ui_proccnt, (long)diff) + diff > max) {
1366  atomic_subtract_long(&uip->ui_proccnt, (long)diff);
1367  return (0);
1368  }
1369  } else {
1370  atomic_add_long(&uip->ui_proccnt, (long)diff);
1371  if (uip->ui_proccnt < 0)
1372  printf("negative proccnt for uid = %d\n", uip->ui_uid);
1373  }
1374  return (1);
1375 }
1376 
1377 /*
1378  * Change the total socket buffer size a user has used.
1379  */
1380 int
1381 chgsbsize(uip, hiwat, to, max)
1382  struct uidinfo *uip;
1383  u_int *hiwat;
1384  u_int to;
1385  rlim_t max;
1386 {
1387  int diff;
1388 
1389  diff = to - *hiwat;
1390  if (diff > 0) {
1391  if (atomic_fetchadd_long(&uip->ui_sbsize, (long)diff) + diff > max) {
1392  atomic_subtract_long(&uip->ui_sbsize, (long)diff);
1393  return (0);
1394  }
1395  } else {
1396  atomic_add_long(&uip->ui_sbsize, (long)diff);
1397  if (uip->ui_sbsize < 0)
1398  printf("negative sbsize for uid = %d\n", uip->ui_uid);
1399  }
1400  *hiwat = to;
1401  return (1);
1402 }
1403 
1404 /*
1405  * Change the count associated with number of pseudo-terminals
1406  * a given user is using. When 'max' is 0, don't enforce a limit
1407  */
1408 int
1409 chgptscnt(uip, diff, max)
1410  struct uidinfo *uip;
1411  int diff;
1412  rlim_t max;
1413 {
1414 
1415  /* Don't allow them to exceed max, but allow subtraction. */
1416  if (diff > 0 && max != 0) {
1417  if (atomic_fetchadd_long(&uip->ui_ptscnt, (long)diff) + diff > max) {
1418  atomic_subtract_long(&uip->ui_ptscnt, (long)diff);
1419  return (0);
1420  }
1421  } else {
1422  atomic_add_long(&uip->ui_ptscnt, (long)diff);
1423  if (uip->ui_ptscnt < 0)
1424  printf("negative ptscnt for uid = %d\n", uip->ui_uid);
1425  }
1426  return (1);
1427 }
rlim_t lim_max(struct proc *p, int which)
struct rlimit * rlp
void umtx_pi_adjust(struct thread *td, u_char oldpri)
Definition: kern_umtx.c:1662
int maxfilesperproc
Definition: subr_param.c:90
static void lim_cb(void *arg)
static MALLOC_DEFINE(M_PLIMIT,"plimit","plimit structures")
int sys_rtprio(struct thread *td, struct rtprio_args *uap)
void killproc(struct proc *p, char *why)
Definition: kern_sig.c:2865
int sys_getrusage(struct thread *td, struct getrusage_args *uap)
void rufetch(struct proc *p, struct rusage *ru)
SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW,&unprivileged_idprio, 0,"Allow non-root users to set an idle priority")
static void ruxagg_locked(struct rusage_ext *rux, struct thread *td)
int chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max)
void sched_prio(struct thread *td, u_char prio)
Definition: sched_4bsd.c:897
rlim_t lim_cur(struct proc *p, int which)
void * hashinit(int elements, struct malloc_type *type, u_long *hashmask)
Definition: subr_hash.c:83
static int donice(struct thread *td, struct proc *p, int n)
void uifree(struct uidinfo *uip)
void critical_exit(void)
Definition: kern_switch.c:192
int kern_getrusage(struct thread *td, int who, struct rusage *rup)
void * malloc(unsigned long size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:454
struct uidinfo * uifind(uid_t uid)
void sched_nice(struct proc *p, int nice)
Definition: sched_4bsd.c:809
int sys_setrlimit(struct thread *td, struct __setrlimit_args *uap)
void lim_copy(struct plimit *dst, struct plimit *src)
u_long maxdsiz
Definition: subr_param.c:104
int maxproc
Definition: subr_param.c:87
__FBSDID("$BSDSUniX$")
linker_function_name_callback_t callback
Definition: linker_if.m:62
void kern_psignal(struct proc *p, int sig)
Definition: kern_sig.c:1975
void uihold(struct uidinfo *uip)
struct plimit * lim_alloc()
int sys_setpriority(struct thread *td, struct setpriority_args *uap)
int priv_check(struct thread *td, int priv)
Definition: kern_priv.c:170
struct proc * pfind(pid_t pid)
Definition: kern_proc.c:304
struct sx allproc_lock
Definition: kern_proc.c:136
void calccru(struct proc *p, struct timeval *up, struct timeval *sp)
static struct rwlock uihashtbl_lock
Definition: kern_resource.c:73
int rtp_to_pri(struct rtprio *rtp, struct thread *td)
void uihashinit()
struct rlimit * rlp
uint64_t cputick2usec(uint64_t tick)
Definition: kern_tc.c:975
void rucollect(struct rusage *ru, struct rusage *ru2)
void sched_class(struct thread *td, int class)
Definition: sched_4bsd.c:824
void rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up, struct timeval *sp)
void lim_fork(struct proc *p1, struct proc *p2)
int chgproccnt(struct uidinfo *uip, int diff, rlim_t max)
int maxprocperuid
Definition: subr_param.c:88
u_long maxssiz
Definition: subr_param.c:106
void ruxagg(struct proc *p, struct thread *td)
struct plimit * lim_hold(struct plimit *limp)
static void calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up, struct timeval *sp)
struct rtprio * rtp
static LIST_HEAD(uihashhead, uidinfo)
Definition: kern_resource.c:74
struct pgrp * pgfind(pid_t pgid)
Definition: kern_proc.c:342
void lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
void racct_destroy(struct racct **racctp)
Definition: kern_racct.c:1268
struct rtprio * rtp
int sys_getrlimit(struct thread *td, struct __getrlimit_args *uap)
int sys_getpriority(struct thread *td, struct getpriority_args *uap)
Definition: kern_resource.c:93
void rufetchtd(struct thread *td, struct rusage *ru)
void free(void *addr, struct malloc_type *mtp)
Definition: kern_malloc.c:554
int printf(const char *fmt,...)
Definition: subr_prf.c:367
void sched_user_prio(struct thread *td, u_char prio)
Definition: sched_4bsd.c:924
void mtx_init(struct mtx *m, const char *name, const char *type, int opts)
Definition: kern_mutex.c:837
int kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which, struct rlimit *limp)
uint64_t cpu_tickrate(void)
Definition: kern_tc.c:956
#define UIHASH(uid)
Definition: kern_resource.c:72
int sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap)
struct rusage * rusage
struct sx proctree_lock
Definition: kern_proc.c:137
struct thread * tdfind(lwpid_t tid, pid_t pid)
Definition: kern_thread.c:1006
void pri_to_rtp(struct thread *td, struct rtprio *rtp)
int chgptscnt(struct uidinfo *uip, int diff, rlim_t max)
void ui_racct_foreach(void(*callback)(struct racct *racct, void *arg2, void *arg3), void *arg2, void *arg3)
void lim_free(struct plimit *limp)
void calcru(struct proc *p, struct timeval *up, struct timeval *sp)
void mtx_destroy(struct mtx *m)
Definition: kern_mutex.c:884
void racct_create(struct racct **racctp)
Definition: kern_racct.c:1263
static struct uidinfo * uilookup(uid_t uid)
int p_cansee(struct thread *td, struct proc *p)
Definition: kern_prot.c:1426
void ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2, struct rusage_ext *rux2)
cpu_tick_f * cpu_ticks
Definition: kern_tc.c:986
void critical_enter(void)
Definition: kern_switch.c:181
int p_cansched(struct thread *td, struct proc *p)
Definition: kern_prot.c:1575
int hz
Definition: subr_param.c:84
static int unprivileged_idprio
int kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp)