FreeBSD kernel kern code
uipc_socket.c
Go to the documentation of this file.
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  * The Regents of the University of California.
4  * Copyright (c) 2004 The FreeBSD Foundation
5  * Copyright (c) 2004-2008 Robert N. M. Watson
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  * notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  * notice, this list of conditions and the following disclaimer in the
15  * documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  * may be used to endorse or promote products derived from this software
18  * without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94
33  */
34 
35 /*
36  * Comments on the socket life cycle:
37  *
38  * soalloc() sets of socket layer state for a socket, called only by
39  * socreate() and sonewconn(). Socket layer private.
40  *
41  * sodealloc() tears down socket layer state for a socket, called only by
42  * sofree() and sonewconn(). Socket layer private.
43  *
44  * pru_attach() associates protocol layer state with an allocated socket;
45  * called only once, may fail, aborting socket allocation. This is called
46  * from socreate() and sonewconn(). Socket layer private.
47  *
48  * pru_detach() disassociates protocol layer state from an attached socket,
49  * and will be called exactly once for sockets in which pru_attach() has
50  * been successfully called. If pru_attach() returned an error,
51  * pru_detach() will not be called. Socket layer private.
52  *
53  * pru_abort() and pru_close() notify the protocol layer that the last
54  * consumer of a socket is starting to tear down the socket, and that the
55  * protocol should terminate the connection. Historically, pru_abort() also
56  * detached protocol state from the socket state, but this is no longer the
57  * case.
58  *
59  * socreate() creates a socket and attaches protocol state. This is a public
60  * interface that may be used by socket layer consumers to create new
61  * sockets.
62  *
63  * sonewconn() creates a socket and attaches protocol state. This is a
64  * public interface that may be used by protocols to create new sockets when
65  * a new connection is received and will be available for accept() on a
66  * listen socket.
67  *
68  * soclose() destroys a socket after possibly waiting for it to disconnect.
69  * This is a public interface that socket consumers should use to close and
70  * release a socket when done with it.
71  *
72  * soabort() destroys a socket without waiting for it to disconnect (used
73  * only for incoming connections that are already partially or fully
74  * connected). This is used internally by the socket layer when clearing
75  * listen socket queues (due to overflow or close on the listen socket), but
76  * is also a public interface protocols may use to abort connections in
77  * their incomplete listen queues should they no longer be required. Sockets
78  * placed in completed connection listen queues should not be aborted for
79  * reasons described in the comment above the soclose() implementation. This
80  * is not a general purpose close routine, and except in the specific
81  * circumstances described here, should not be used.
82  *
83  * sofree() will free a socket and its protocol state if all references on
84  * the socket have been released, and is the public interface to attempt to
85  * free a socket when a reference is removed. This is a socket layer private
86  * interface.
87  *
88  * NOTE: In addition to socreate() and soclose(), which provide a single
89  * socket reference to the consumer to be managed as required, there are two
90  * calls to explicitly manage socket references, soref(), and sorele().
91  * Currently, these are generally required only when transitioning a socket
92  * from a listen queue to a file descriptor, in order to prevent garbage
93  * collection of the socket at an untimely moment. For a number of reasons,
94  * these interfaces are not preferred, and should be avoided.
95  *
96  * NOTE: With regard to VNETs the general rule is that callers do not set
97  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
99  * and sorflush(), which are usually called from a pre-set VNET context.
100  * sopoll() currently does not need a VNET context to be set.
101  */
102 
103 #include <sys/cdefs.h>
104 __FBSDID("$BSDSUniX$");
105 
106 #include "opt_inet.h"
107 #include "opt_inet6.h"
108 #include "opt_zero.h"
109 #include "opt_compat.h"
110 
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/fcntl.h>
114 #include <sys/limits.h>
115 #include <sys/lock.h>
116 #include <sys/mac.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/domain.h>
121 #include <sys/file.h> /* for struct knote */
122 #include <sys/kernel.h>
123 #include <sys/event.h>
124 #include <sys/eventhandler.h>
125 #include <sys/poll.h>
126 #include <sys/proc.h>
127 #include <sys/protosw.h>
128 #include <sys/socket.h>
129 #include <sys/socketvar.h>
130 #include <sys/resourcevar.h>
131 #include <net/route.h>
132 #include <sys/signalvar.h>
133 #include <sys/stat.h>
134 #include <sys/sx.h>
135 #include <sys/sysctl.h>
136 #include <sys/uio.h>
137 #include <sys/jail.h>
138 #include <sys/syslog.h>
139 #include <netinet/in.h>
140 
141 #include <net/vnet.h>
142 
143 #include <security/mac/mac_framework.h>
144 
145 #include <vm/uma.h>
146 
147 #ifdef COMPAT_32BIT
148 #include <sys/mount.h>
149 #include <sys/sysent.h>
150 #include <compat/compat32bit/compat32bit.h>
151 #endif
152 
153 static int soreceive_rcvoob(struct socket *so, struct uio *uio,
154  int flags);
155 
156 static void filt_sordetach(struct knote *kn);
157 static int filt_soread(struct knote *kn, long hint);
158 static void filt_sowdetach(struct knote *kn);
159 static int filt_sowrite(struct knote *kn, long hint);
160 static int filt_solisten(struct knote *kn, long hint);
161 
162 static struct filterops solisten_filtops = {
163  .f_isfd = 1,
164  .f_detach = filt_sordetach,
165  .f_event = filt_solisten,
166 };
167 static struct filterops soread_filtops = {
168  .f_isfd = 1,
169  .f_detach = filt_sordetach,
170  .f_event = filt_soread,
171 };
172 static struct filterops sowrite_filtops = {
173  .f_isfd = 1,
174  .f_detach = filt_sowdetach,
175  .f_event = filt_sowrite,
176 };
177 
178 so_gen_t so_gencnt; /* generation count for sockets */
179 
180 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
181 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
182 
183 #define VNET_SO_ASSERT(so) \
184  VNET_ASSERT(curvnet != NULL, \
185  ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
186 
187 /*
188  * Limit on the number of connections in the listen queue waiting
189  * for accept(2).
190  */
191 static int somaxconn = SOMAXCONN;
192 
193 static int
194 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
195 {
196  int error;
197  int val;
198 
199  val = somaxconn;
200  error = sysctl_handle_int(oidp, &val, 0, req);
201  if (error || !req->newptr )
202  return (error);
203 
204  if (val < 1 || val > USHRT_MAX)
205  return (EINVAL);
206 
207  somaxconn = val;
208  return (0);
209 }
210 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW,
211  0, sizeof(int), sysctl_somaxconn, "I",
212  "Maximum listen socket pending connection accept queue size");
213 
214 static int numopensockets;
215 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
216  &numopensockets, 0, "Number of open sockets");
217 
218 #ifdef ZERO_COPY_SOCKETS
219 /* These aren't static because they're used in other files. */
220 int so_zero_copy_send = 1;
221 int so_zero_copy_receive = 1;
222 SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
223  "Zero copy controls");
224 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
225  &so_zero_copy_receive, 0, "Enable zero copy receive");
226 SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
227  &so_zero_copy_send, 0, "Enable zero copy send");
228 #endif /* ZERO_COPY_SOCKETS */
229 
230 /*
231  * accept_mtx locks down per-socket fields relating to accept queues. See
232  * socketvar.h for an annotation of the protected fields of struct socket.
233  */
234 struct mtx accept_mtx;
235 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
236 
237 /*
238  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
239  * so_gencnt field.
240  */
241 static struct mtx so_global_mtx;
242 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
243 
244 /*
245  * General IPC sysctl name space, used by sockets and a variety of other IPC
246  * types.
247  */
248 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
249 
250 /*
251  * Initialize the socket subsystem and set up the socket
252  * memory allocator.
253  */
254 uma_zone_t socket_zone;
256 
257 static void
259 {
260 
261  uma_zone_set_max(socket_zone, maxsockets);
262 }
263 
264 static void
265 socket_init(void *tag)
266 {
267 
268  socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
269  NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
270  uma_zone_set_max(socket_zone, maxsockets);
271  EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
272  EVENTHANDLER_PRI_FIRST);
273 }
274 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
275 
276 /*
277  * Initialise maxsockets. This SYSINIT must be run after
278  * tunable_mbinit().
279  */
280 static void
281 init_maxsockets(void *ignored)
282 {
283 
284  TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
285  maxsockets = imax(maxsockets, maxfiles);
286 }
287 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
288 
289 /*
290  * Sysctl to get and set the maximum global sockets limit. Notify protocols
291  * of the change so that they can update their dependent limits as required.
292  */
293 static int
294 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
295 {
296  int error, newmaxsockets;
297 
298  newmaxsockets = maxsockets;
299  error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
300  if (error == 0 && req->newptr) {
301  if (newmaxsockets > maxsockets &&
302  newmaxsockets <= maxfiles) {
303  maxsockets = newmaxsockets;
304  EVENTHANDLER_INVOKE(maxsockets_change);
305  } else
306  error = EINVAL;
307  }
308  return (error);
309 }
310 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
311  &maxsockets, 0, sysctl_maxsockets, "IU",
312  "Maximum number of sockets avaliable");
313 
314 /*
315  * Socket operation routines. These routines are called by the routines in
316  * sys_socket.c or from a system process, and implement the semantics of
317  * socket operations by switching out to the protocol specific routines.
318  */
319 
320 /*
321  * Get a socket structure from our zone, and initialize it. Note that it
322  * would probably be better to allocate socket and PCB at the same time, but
323  * I'm not convinced that all the protocols can be easily modified to do
324  * this.
325  *
326  * soalloc() returns a socket with a ref count of 0.
327  */
328 static struct socket *
329 soalloc(struct vnet *vnet)
330 {
331  struct socket *so;
332 
333  so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
334  if (so == NULL)
335  return (NULL);
336 #ifdef MAC
337  if (mac_socket_init(so, M_NOWAIT) != 0) {
338  uma_zfree(socket_zone, so);
339  return (NULL);
340  }
341 #endif
342  SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
343  SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
344  sx_init(&so->so_snd.sb_sx, "so_snd_sx");
345  sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
346  TAILQ_INIT(&so->so_aiojobq);
347  mtx_lock(&so_global_mtx);
348  so->so_gencnt = ++so_gencnt;
349  ++numopensockets;
350 #ifdef VIMAGE
351  VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
352  __func__, __LINE__, so));
353  vnet->vnet_sockcnt++;
354  so->so_vnet = vnet;
355 #endif
356  mtx_unlock(&so_global_mtx);
357  return (so);
358 }
359 
360 /*
361  * Free the storage associated with a socket at the socket layer, tear down
362  * locks, labels, etc. All protocol state is assumed already to have been
363  * torn down (and possibly never set up) by the caller.
364  */
365 static void
366 sodealloc(struct socket *so)
367 {
368 
369  KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
370  KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
371 
372  mtx_lock(&so_global_mtx);
373  so->so_gencnt = ++so_gencnt;
374  --numopensockets; /* Could be below, but faster here. */
375 #ifdef VIMAGE
376  VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
377  __func__, __LINE__, so));
378  so->so_vnet->vnet_sockcnt--;
379 #endif
380  mtx_unlock(&so_global_mtx);
381  if (so->so_rcv.sb_hiwat)
382  (void)chgsbsize(so->so_cred->cr_uidinfo,
383  &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
384  if (so->so_snd.sb_hiwat)
385  (void)chgsbsize(so->so_cred->cr_uidinfo,
386  &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
387 #ifdef INET
388  /* remove acccept filter if one is present. */
389  if (so->so_accf != NULL)
390  do_setopt_accept_filter(so, NULL);
391 #endif
392 #ifdef MAC
393  mac_socket_destroy(so);
394 #endif
395  crfree(so->so_cred);
396  sx_destroy(&so->so_snd.sb_sx);
397  sx_destroy(&so->so_rcv.sb_sx);
398  SOCKBUF_LOCK_DESTROY(&so->so_snd);
399  SOCKBUF_LOCK_DESTROY(&so->so_rcv);
400  uma_zfree(socket_zone, so);
401 }
402 
403 /*
404  * socreate returns a socket with a ref count of 1. The socket should be
405  * closed with soclose().
406  */
407 int
408 socreate(int dom, struct socket **aso, int type, int proto,
409  struct ucred *cred, struct thread *td)
410 {
411  struct protosw *prp;
412  struct socket *so;
413  int error;
414 
415  if (proto)
416  prp = pffindproto(dom, proto, type);
417  else
418  prp = pffindtype(dom, type);
419 
420  if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
421  prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
422  return (EPROTONOSUPPORT);
423 
424  if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
425  return (EPROTONOSUPPORT);
426 
427  if (prp->pr_type != type)
428  return (EPROTOTYPE);
429  so = soalloc(CRED_TO_VNET(cred));
430  if (so == NULL)
431  return (ENOBUFS);
432 
433  TAILQ_INIT(&so->so_incomp);
434  TAILQ_INIT(&so->so_comp);
435  so->so_type = type;
436  so->so_cred = crhold(cred);
437  if ((prp->pr_domain->dom_family == PF_INET) ||
438  (prp->pr_domain->dom_family == PF_INET6) ||
439  (prp->pr_domain->dom_family == PF_ROUTE))
440  so->so_fibnum = td->td_proc->p_fibnum;
441  else
442  so->so_fibnum = 0;
443  so->so_proto = prp;
444 #ifdef MAC
445  mac_socket_create(cred, so);
446 #endif
447  knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
448  knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
449  so->so_count = 1;
450  /*
451  * Auto-sizing of socket buffers is managed by the protocols and
452  * the appropriate flags must be set in the pru_attach function.
453  */
454  CURVNET_SET(so->so_vnet);
455  error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
456  CURVNET_RESTORE();
457  if (error) {
458  KASSERT(so->so_count == 1, ("socreate: so_count %d",
459  so->so_count));
460  so->so_count = 0;
461  sodealloc(so);
462  return (error);
463  }
464  *aso = so;
465  return (0);
466 }
467 
468 #ifdef REGRESSION
469 static int regression_sonewconn_earlytest = 1;
470 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
471  &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
472 #endif
473 
474 /*
475  * When an attempt at a new connection is noted on a socket which accepts
476  * connections, sonewconn is called. If the connection is possible (subject
477  * to space constraints, etc.) then we allocate a new structure, propoerly
478  * linked into the data structure of the original socket, and return this.
479  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
480  *
481  * Note: the ref count on the socket is 0 on return.
482  */
483 struct socket *
484 sonewconn(struct socket *head, int connstatus)
485 {
486  static struct timeval lastover;
487  static struct timeval overinterval = { 60, 0 };
488  static int overcount;
489 
490  struct socket *so;
491  int over;
492 
493  ACCEPT_LOCK();
494  over = (head->so_qlen > 3 * head->so_qlimit / 2);
495  ACCEPT_UNLOCK();
496 #ifdef REGRESSION
497  if (regression_sonewconn_earlytest && over) {
498 #else
499  if (over) {
500 #endif
501  overcount++;
502 
503  if (ratecheck(&lastover, &overinterval)) {
504  log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: "
505  "%i already in queue awaiting acceptance "
506  "(%d occurrences)\n",
507  __func__, head->so_pcb, head->so_qlen, overcount);
508 
509  overcount = 0;
510  }
511 
512  return (NULL);
513  }
514  VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
515  __func__, __LINE__, head));
516  so = soalloc(head->so_vnet);
517  if (so == NULL) {
518  log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
519  "limit reached or out of memory\n",
520  __func__, head->so_pcb);
521  return (NULL);
522  }
523  if ((head->so_options & SO_ACCEPTFILTER) != 0)
524  connstatus = 0;
525  so->so_head = head;
526  so->so_type = head->so_type;
527  so->so_options = head->so_options &~ SO_ACCEPTCONN;
528  so->so_linger = head->so_linger;
529  so->so_state = head->so_state | SS_NOFDREF;
530  so->so_fibnum = head->so_fibnum;
531  so->so_proto = head->so_proto;
532  so->so_cred = crhold(head->so_cred);
533 #ifdef MAC
534  mac_socket_newconn(head, so);
535 #endif
536  knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
537  knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
538  VNET_SO_ASSERT(head);
539  if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
540  sodealloc(so);
541  log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
542  __func__, head->so_pcb);
543  return (NULL);
544  }
545  if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
546  sodealloc(so);
547  log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
548  __func__, head->so_pcb);
549  return (NULL);
550  }
551  so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
552  so->so_snd.sb_lowat = head->so_snd.sb_lowat;
553  so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
554  so->so_snd.sb_timeo = head->so_snd.sb_timeo;
555  so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
556  so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
557  so->so_state |= connstatus;
558  ACCEPT_LOCK();
559  /*
560  * The accept socket may be tearing down but we just
561  * won a race on the ACCEPT_LOCK.
562  * However, if sctp_peeloff() is called on a 1-to-many
563  * style socket, the SO_ACCEPTCONN doesn't need to be set.
564  */
565  if (!(head->so_options & SO_ACCEPTCONN) &&
566  ((head->so_proto->pr_protocol != IPPROTO_SCTP) ||
567  (head->so_type != SOCK_SEQPACKET))) {
568  SOCK_LOCK(so);
569  so->so_head = NULL;
570  sofree(so); /* NB: returns ACCEPT_UNLOCK'ed. */
571  return (NULL);
572  }
573  if (connstatus) {
574  TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
575  so->so_qstate |= SQ_COMP;
576  head->so_qlen++;
577  } else {
578  /*
579  * Keep removing sockets from the head until there's room for
580  * us to insert on the tail. In pre-locking revisions, this
581  * was a simple if(), but as we could be racing with other
582  * threads and soabort() requires dropping locks, we must
583  * loop waiting for the condition to be true.
584  */
585  while (head->so_incqlen > head->so_qlimit) {
586  struct socket *sp;
587  sp = TAILQ_FIRST(&head->so_incomp);
588  TAILQ_REMOVE(&head->so_incomp, sp, so_list);
589  head->so_incqlen--;
590  sp->so_qstate &= ~SQ_INCOMP;
591  sp->so_head = NULL;
592  ACCEPT_UNLOCK();
593  soabort(sp);
594  ACCEPT_LOCK();
595  }
596  TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
597  so->so_qstate |= SQ_INCOMP;
598  head->so_incqlen++;
599  }
600  ACCEPT_UNLOCK();
601  if (connstatus) {
602  sorwakeup(head);
603  wakeup_one(&head->so_timeo);
604  }
605  return (so);
606 }
607 
608 int
609 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
610 {
611  int error;
612 
613  CURVNET_SET(so->so_vnet);
614  error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
615  CURVNET_RESTORE();
616  return error;
617 }
618 
619 /*
620  * solisten() transitions a socket from a non-listening state to a listening
621  * state, but can also be used to update the listen queue depth on an
622  * existing listen socket. The protocol will call back into the sockets
623  * layer using solisten_proto_check() and solisten_proto() to check and set
624  * socket-layer listen state. Call backs are used so that the protocol can
625  * acquire both protocol and socket layer locks in whatever order is required
626  * by the protocol.
627  *
628  * Protocol implementors are advised to hold the socket lock across the
629  * socket-layer test and set to avoid races at the socket layer.
630  */
631 int
632 solisten(struct socket *so, int backlog, struct thread *td)
633 {
634  int error;
635 
636  CURVNET_SET(so->so_vnet);
637  error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
638  CURVNET_RESTORE();
639  return error;
640 }
641 
642 int
643 solisten_proto_check(struct socket *so)
644 {
645 
646  SOCK_LOCK_ASSERT(so);
647 
648  if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
649  SS_ISDISCONNECTING))
650  return (EINVAL);
651  return (0);
652 }
653 
654 void
655 solisten_proto(struct socket *so, int backlog)
656 {
657 
658  SOCK_LOCK_ASSERT(so);
659 
660  if (backlog < 0 || backlog > somaxconn)
661  backlog = somaxconn;
662  so->so_qlimit = backlog;
663  so->so_options |= SO_ACCEPTCONN;
664 }
665 
666 /*
667  * Evaluate the reference count and named references on a socket; if no
668  * references remain, free it. This should be called whenever a reference is
669  * released, such as in sorele(), but also when named reference flags are
670  * cleared in socket or protocol code.
671  *
672  * sofree() will free the socket if:
673  *
674  * - There are no outstanding file descriptor references or related consumers
675  * (so_count == 0).
676  *
677  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
678  *
679  * - The protocol does not have an outstanding strong reference on the socket
680  * (SS_PROTOREF).
681  *
682  * - The socket is not in a completed connection queue, so a process has been
683  * notified that it is present. If it is removed, the user process may
684  * block in accept() despite select() saying the socket was ready.
685  */
686 void
687 sofree(struct socket *so)
688 {
689  struct protosw *pr = so->so_proto;
690  struct socket *head;
691 
692  ACCEPT_LOCK_ASSERT();
693  SOCK_LOCK_ASSERT(so);
694 
695  if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
696  (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
697  SOCK_UNLOCK(so);
698  ACCEPT_UNLOCK();
699  return;
700  }
701 
702  head = so->so_head;
703  if (head != NULL) {
704  KASSERT((so->so_qstate & SQ_COMP) != 0 ||
705  (so->so_qstate & SQ_INCOMP) != 0,
706  ("sofree: so_head != NULL, but neither SQ_COMP nor "
707  "SQ_INCOMP"));
708  KASSERT((so->so_qstate & SQ_COMP) == 0 ||
709  (so->so_qstate & SQ_INCOMP) == 0,
710  ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
711  TAILQ_REMOVE(&head->so_incomp, so, so_list);
712  head->so_incqlen--;
713  so->so_qstate &= ~SQ_INCOMP;
714  so->so_head = NULL;
715  }
716  KASSERT((so->so_qstate & SQ_COMP) == 0 &&
717  (so->so_qstate & SQ_INCOMP) == 0,
718  ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
719  so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
720  if (so->so_options & SO_ACCEPTCONN) {
721  KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated"));
722  KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_incomp populated"));
723  }
724  SOCK_UNLOCK(so);
725  ACCEPT_UNLOCK();
726 
727  VNET_SO_ASSERT(so);
728  if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
729  (*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
730  if (pr->pr_usrreqs->pru_detach != NULL)
731  (*pr->pr_usrreqs->pru_detach)(so);
732 
733  /*
734  * From this point on, we assume that no other references to this
735  * socket exist anywhere else in the stack. Therefore, no locks need
736  * to be acquired or held.
737  *
738  * We used to do a lot of socket buffer and socket locking here, as
739  * well as invoke sorflush() and perform wakeups. The direct call to
740  * dom_dispose() and sbrelease_internal() are an inlining of what was
741  * necessary from sorflush().
742  *
743  * Notice that the socket buffer and kqueue state are torn down
744  * before calling pru_detach. This means that protocols shold not
745  * assume they can perform socket wakeups, etc, in their detach code.
746  */
747  sbdestroy(&so->so_snd, so);
748  sbdestroy(&so->so_rcv, so);
749  seldrain(&so->so_snd.sb_sel);
750  seldrain(&so->so_rcv.sb_sel);
751  knlist_destroy(&so->so_rcv.sb_sel.si_note);
752  knlist_destroy(&so->so_snd.sb_sel.si_note);
753  sodealloc(so);
754 }
755 
756 /*
757  * Close a socket on last file table reference removal. Initiate disconnect
758  * if connected. Free socket when disconnect complete.
759  *
760  * This function will sorele() the socket. Note that soclose() may be called
761  * prior to the ref count reaching zero. The actual socket structure will
762  * not be freed until the ref count reaches zero.
763  */
764 int
765 soclose(struct socket *so)
766 {
767  int error = 0;
768 
769  KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
770 
771  CURVNET_SET(so->so_vnet);
772  funsetown(&so->so_sigio);
773  if (so->so_state & SS_ISCONNECTED) {
774  if ((so->so_state & SS_ISDISCONNECTING) == 0) {
775  error = sodisconnect(so);
776  if (error) {
777  if (error == ENOTCONN)
778  error = 0;
779  goto drop;
780  }
781  }
782  if (so->so_options & SO_LINGER) {
783  if ((so->so_state & SS_ISDISCONNECTING) &&
784  (so->so_state & SS_NBIO))
785  goto drop;
786  while (so->so_state & SS_ISCONNECTED) {
787  error = tsleep(&so->so_timeo,
788  PSOCK | PCATCH, "soclos", so->so_linger * hz);
789  if (error)
790  break;
791  }
792  }
793  }
794 
795 drop:
796  if (so->so_proto->pr_usrreqs->pru_close != NULL)
797  (*so->so_proto->pr_usrreqs->pru_close)(so);
798  ACCEPT_LOCK();
799  if (so->so_options & SO_ACCEPTCONN) {
800  struct socket *sp;
801  /*
802  * Prevent new additions to the accept queues due
803  * to ACCEPT_LOCK races while we are draining them.
804  */
805  so->so_options &= ~SO_ACCEPTCONN;
806  while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
807  TAILQ_REMOVE(&so->so_incomp, sp, so_list);
808  so->so_incqlen--;
809  sp->so_qstate &= ~SQ_INCOMP;
810  sp->so_head = NULL;
811  ACCEPT_UNLOCK();
812  soabort(sp);
813  ACCEPT_LOCK();
814  }
815  while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
816  TAILQ_REMOVE(&so->so_comp, sp, so_list);
817  so->so_qlen--;
818  sp->so_qstate &= ~SQ_COMP;
819  sp->so_head = NULL;
820  ACCEPT_UNLOCK();
821  soabort(sp);
822  ACCEPT_LOCK();
823  }
824  KASSERT((TAILQ_EMPTY(&so->so_comp)),
825  ("%s: so_comp populated", __func__));
826  KASSERT((TAILQ_EMPTY(&so->so_incomp)),
827  ("%s: so_incomp populated", __func__));
828  }
829  SOCK_LOCK(so);
830  KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
831  so->so_state |= SS_NOFDREF;
832  sorele(so); /* NB: Returns with ACCEPT_UNLOCK(). */
833  CURVNET_RESTORE();
834  return (error);
835 }
836 
837 /*
838  * soabort() is used to abruptly tear down a connection, such as when a
839  * resource limit is reached (listen queue depth exceeded), or if a listen
840  * socket is closed while there are sockets waiting to be accepted.
841  *
842  * This interface is tricky, because it is called on an unreferenced socket,
843  * and must be called only by a thread that has actually removed the socket
844  * from the listen queue it was on, or races with other threads are risked.
845  *
846  * This interface will call into the protocol code, so must not be called
847  * with any socket locks held. Protocols do call it while holding their own
848  * recursible protocol mutexes, but this is something that should be subject
849  * to review in the future.
850  */
851 void
852 soabort(struct socket *so)
853 {
854 
855  /*
856  * In as much as is possible, assert that no references to this
857  * socket are held. This is not quite the same as asserting that the
858  * current thread is responsible for arranging for no references, but
859  * is as close as we can get for now.
860  */
861  KASSERT(so->so_count == 0, ("soabort: so_count"));
862  KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
863  KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
864  KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
865  KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
866  VNET_SO_ASSERT(so);
867 
868  if (so->so_proto->pr_usrreqs->pru_abort != NULL)
869  (*so->so_proto->pr_usrreqs->pru_abort)(so);
870  ACCEPT_LOCK();
871  SOCK_LOCK(so);
872  sofree(so);
873 }
874 
875 int
876 soaccept(struct socket *so, struct sockaddr **nam)
877 {
878  int error;
879 
880  SOCK_LOCK(so);
881  KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
882  so->so_state &= ~SS_NOFDREF;
883  SOCK_UNLOCK(so);
884 
885  CURVNET_SET(so->so_vnet);
886  error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
887  CURVNET_RESTORE();
888  return (error);
889 }
890 
891 int
892 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
893 {
894  int error;
895 
896  if (so->so_options & SO_ACCEPTCONN)
897  return (EOPNOTSUPP);
898 
899  CURVNET_SET(so->so_vnet);
900  /*
901  * If protocol is connection-based, can only connect once.
902  * Otherwise, if connected, try to disconnect first. This allows
903  * user to disconnect by connecting to, e.g., a null address.
904  */
905  if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
906  ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
907  (error = sodisconnect(so)))) {
908  error = EISCONN;
909  } else {
910  /*
911  * Prevent accumulated error from previous connection from
912  * biting us.
913  */
914  so->so_error = 0;
915  error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
916  }
917  CURVNET_RESTORE();
918 
919  return (error);
920 }
921 
922 int
923 soconnect2(struct socket *so1, struct socket *so2)
924 {
925  int error;
926 
927  CURVNET_SET(so1->so_vnet);
928  error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
929  CURVNET_RESTORE();
930  return (error);
931 }
932 
933 int
934 sodisconnect(struct socket *so)
935 {
936  int error;
937 
938  if ((so->so_state & SS_ISCONNECTED) == 0)
939  return (ENOTCONN);
940  if (so->so_state & SS_ISDISCONNECTING)
941  return (EALREADY);
942  VNET_SO_ASSERT(so);
943  error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
944  return (error);
945 }
946 
947 #ifdef ZERO_COPY_SOCKETS
948 struct so_zerocopy_stats{
949  int size_ok;
950  int align_ok;
951  int found_ifp;
952 };
953 struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
954 
955 /*
956  * sosend_copyin() is only used if zero copy sockets are enabled. Otherwise
957  * sosend_dgram() and sosend_generic() use m_uiotombuf().
958  *
959  * sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
960  * all of the data referenced by the uio. If desired, it uses zero-copy.
961  * *space will be updated to reflect data copied in.
962  *
963  * NB: If atomic I/O is requested, the caller must already have checked that
964  * space can hold resid bytes.
965  *
966  * NB: In the event of an error, the caller may need to free the partial
967  * chain pointed to by *mpp. The contents of both *uio and *space may be
968  * modified even in the case of an error.
969  */
970 static int
971 sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
972  int flags)
973 {
974  struct mbuf *m, **mp, *top;
975  long len;
976  ssize_t resid;
977  int error;
978  int cow_send;
979 
980  *retmp = top = NULL;
981  mp = &top;
982  len = 0;
983  resid = uio->uio_resid;
984  error = 0;
985  do {
986  cow_send = 0;
987  if (resid >= MINCLSIZE) {
988  if (top == NULL) {
989  m = m_gethdr(M_WAITOK, MT_DATA);
990  m->m_pkthdr.len = 0;
991  m->m_pkthdr.rcvif = NULL;
992  } else
993  m = m_get(M_WAITOK, MT_DATA);
994  if (so_zero_copy_send &&
995  resid >= PAGE_SIZE &&
996  *space >= PAGE_SIZE &&
997  uio->uio_iov->iov_len >= PAGE_SIZE) {
998  so_zerocp_stats.size_ok++;
999  so_zerocp_stats.align_ok++;
1000  cow_send = socow_setup(m, uio);
1001  len = cow_send;
1002  }
1003  if (!cow_send) {
1004  m_clget(m, M_WAITOK);
1005  len = min(min(MCLBYTES, resid), *space);
1006  }
1007  } else {
1008  if (top == NULL) {
1009  m = m_gethdr(M_WAIT, MT_DATA);
1010  m->m_pkthdr.len = 0;
1011  m->m_pkthdr.rcvif = NULL;
1012 
1013  len = min(min(MHLEN, resid), *space);
1014  /*
1015  * For datagram protocols, leave room
1016  * for protocol headers in first mbuf.
1017  */
1018  if (atomic && m && len < MHLEN)
1019  MH_ALIGN(m, len);
1020  } else {
1021  m = m_get(M_WAIT, MT_DATA);
1022  len = min(min(MLEN, resid), *space);
1023  }
1024  }
1025  if (m == NULL) {
1026  error = ENOBUFS;
1027  goto out;
1028  }
1029 
1030  *space -= len;
1031  if (cow_send)
1032  error = 0;
1033  else
1034  error = uiomove(mtod(m, void *), (int)len, uio);
1035  resid = uio->uio_resid;
1036  m->m_len = len;
1037  *mp = m;
1038  top->m_pkthdr.len += len;
1039  if (error)
1040  goto out;
1041  mp = &m->m_next;
1042  if (resid <= 0) {
1043  if (flags & MSG_EOR)
1044  top->m_flags |= M_EOR;
1045  break;
1046  }
1047  } while (*space > 0 && atomic);
1048 out:
1049  *retmp = top;
1050  return (error);
1051 }
1052 #endif /* ZERO_COPY_SOCKETS */
1053 
1054 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
1055 
1056 int
1057 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1058  struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1059 {
1060  long space;
1061  ssize_t resid;
1062  int clen = 0, error, dontroute;
1063 #ifdef ZERO_COPY_SOCKETS
1064  int atomic = sosendallatonce(so) || top;
1065 #endif
1066 
1067  KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM"));
1068  KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
1069  ("sodgram_send: !PR_ATOMIC"));
1070 
1071  if (uio != NULL)
1072  resid = uio->uio_resid;
1073  else
1074  resid = top->m_pkthdr.len;
1075  /*
1076  * In theory resid should be unsigned. However, space must be
1077  * signed, as it might be less than 0 if we over-committed, and we
1078  * must use a signed comparison of space and resid. On the other
1079  * hand, a negative resid causes us to loop sending 0-length
1080  * segments to the protocol.
1081  */
1082  if (resid < 0) {
1083  error = EINVAL;
1084  goto out;
1085  }
1086 
1087  dontroute =
1088  (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
1089  if (td != NULL)
1090  td->td_ru.ru_msgsnd++;
1091  if (control != NULL)
1092  clen = control->m_len;
1093 
1094  SOCKBUF_LOCK(&so->so_snd);
1095  if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1096  SOCKBUF_UNLOCK(&so->so_snd);
1097  error = EPIPE;
1098  goto out;
1099  }
1100  if (so->so_error) {
1101  error = so->so_error;
1102  so->so_error = 0;
1103  SOCKBUF_UNLOCK(&so->so_snd);
1104  goto out;
1105  }
1106  if ((so->so_state & SS_ISCONNECTED) == 0) {
1107  /*
1108  * `sendto' and `sendmsg' is allowed on a connection-based
1109  * socket if it supports implied connect. Return ENOTCONN if
1110  * not connected and no address is supplied.
1111  */
1112  if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1113  (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1114  if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1115  !(resid == 0 && clen != 0)) {
1116  SOCKBUF_UNLOCK(&so->so_snd);
1117  error = ENOTCONN;
1118  goto out;
1119  }
1120  } else if (addr == NULL) {
1121  if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1122  error = ENOTCONN;
1123  else
1124  error = EDESTADDRREQ;
1125  SOCKBUF_UNLOCK(&so->so_snd);
1126  goto out;
1127  }
1128  }
1129 
1130  /*
1131  * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a
1132  * problem and need fixing.
1133  */
1134  space = sbspace(&so->so_snd);
1135  if (flags & MSG_OOB)
1136  space += 1024;
1137  space -= clen;
1138  SOCKBUF_UNLOCK(&so->so_snd);
1139  if (resid > space) {
1140  error = EMSGSIZE;
1141  goto out;
1142  }
1143  if (uio == NULL) {
1144  resid = 0;
1145  if (flags & MSG_EOR)
1146  top->m_flags |= M_EOR;
1147  } else {
1148 #ifdef ZERO_COPY_SOCKETS
1149  error = sosend_copyin(uio, &top, atomic, &space, flags);
1150  if (error)
1151  goto out;
1152 #else
1153  /*
1154  * Copy the data from userland into a mbuf chain.
1155  * If no data is to be copied in, a single empty mbuf
1156  * is returned.
1157  */
1158  top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
1159  (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
1160  if (top == NULL) {
1161  error = EFAULT; /* only possible error */
1162  goto out;
1163  }
1164  space -= resid - uio->uio_resid;
1165 #endif
1166  resid = uio->uio_resid;
1167  }
1168  KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
1169  /*
1170  * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
1171  * than with.
1172  */
1173  if (dontroute) {
1174  SOCK_LOCK(so);
1175  so->so_options |= SO_DONTROUTE;
1176  SOCK_UNLOCK(so);
1177  }
1178  /*
1179  * XXX all the SBS_CANTSENDMORE checks previously done could be out
1180  * of date. We could have recieved a reset packet in an interrupt or
1181  * maybe we slept while doing page faults in uiomove() etc. We could
1182  * probably recheck again inside the locking protection here, but
1183  * there are probably other places that this also happens. We must
1184  * rethink this.
1185  */
1186  VNET_SO_ASSERT(so);
1187  error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1188  (flags & MSG_OOB) ? PRUS_OOB :
1189  /*
1190  * If the user set MSG_EOF, the protocol understands this flag and
1191  * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
1192  */
1193  ((flags & MSG_EOF) &&
1194  (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1195  (resid <= 0)) ?
1196  PRUS_EOF :
1197  /* If there is more to send set PRUS_MORETOCOME */
1198  (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1199  top, addr, control, td);
1200  if (dontroute) {
1201  SOCK_LOCK(so);
1202  so->so_options &= ~SO_DONTROUTE;
1203  SOCK_UNLOCK(so);
1204  }
1205  clen = 0;
1206  control = NULL;
1207  top = NULL;
1208 out:
1209  if (top != NULL)
1210  m_freem(top);
1211  if (control != NULL)
1212  m_freem(control);
1213  return (error);
1214 }
1215 
1216 /*
1217  * Send on a socket. If send must go all at once and message is larger than
1218  * send buffering, then hard error. Lock against other senders. If must go
1219  * all at once and not enough room now, then inform user that this would
1220  * block and do nothing. Otherwise, if nonblocking, send as much as
1221  * possible. The data to be sent is described by "uio" if nonzero, otherwise
1222  * by the mbuf chain "top" (which must be null if uio is not). Data provided
1223  * in mbuf chain must be small enough to send all at once.
1224  *
1225  * Returns nonzero on error, timeout or signal; callers must check for short
1226  * counts if EINTR/ERESTART are returned. Data and control buffers are freed
1227  * on return.
1228  */
1229 int
1230 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
1231  struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1232 {
1233  long space;
1234  ssize_t resid;
1235  int clen = 0, error, dontroute;
1236  int atomic = sosendallatonce(so) || top;
1237 
1238  if (uio != NULL)
1239  resid = uio->uio_resid;
1240  else
1241  resid = top->m_pkthdr.len;
1242  /*
1243  * In theory resid should be unsigned. However, space must be
1244  * signed, as it might be less than 0 if we over-committed, and we
1245  * must use a signed comparison of space and resid. On the other
1246  * hand, a negative resid causes us to loop sending 0-length
1247  * segments to the protocol.
1248  *
1249  * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
1250  * type sockets since that's an error.
1251  */
1252  if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
1253  error = EINVAL;
1254  goto out;
1255  }
1256 
1257  dontroute =
1258  (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
1259  (so->so_proto->pr_flags & PR_ATOMIC);
1260  if (td != NULL)
1261  td->td_ru.ru_msgsnd++;
1262  if (control != NULL)
1263  clen = control->m_len;
1264 
1265  error = sblock(&so->so_snd, SBLOCKWAIT(flags));
1266  if (error)
1267  goto out;
1268 
1269 restart:
1270  do {
1271  SOCKBUF_LOCK(&so->so_snd);
1272  if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1273  SOCKBUF_UNLOCK(&so->so_snd);
1274  error = EPIPE;
1275  goto release;
1276  }
1277  if (so->so_error) {
1278  error = so->so_error;
1279  so->so_error = 0;
1280  SOCKBUF_UNLOCK(&so->so_snd);
1281  goto release;
1282  }
1283  if ((so->so_state & SS_ISCONNECTED) == 0) {
1284  /*
1285  * `sendto' and `sendmsg' is allowed on a connection-
1286  * based socket if it supports implied connect.
1287  * Return ENOTCONN if not connected and no address is
1288  * supplied.
1289  */
1290  if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
1291  (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
1292  if ((so->so_state & SS_ISCONFIRMING) == 0 &&
1293  !(resid == 0 && clen != 0)) {
1294  SOCKBUF_UNLOCK(&so->so_snd);
1295  error = ENOTCONN;
1296  goto release;
1297  }
1298  } else if (addr == NULL) {
1299  SOCKBUF_UNLOCK(&so->so_snd);
1300  if (so->so_proto->pr_flags & PR_CONNREQUIRED)
1301  error = ENOTCONN;
1302  else
1303  error = EDESTADDRREQ;
1304  goto release;
1305  }
1306  }
1307  space = sbspace(&so->so_snd);
1308  if (flags & MSG_OOB)
1309  space += 1024;
1310  if ((atomic && resid > so->so_snd.sb_hiwat) ||
1311  clen > so->so_snd.sb_hiwat) {
1312  SOCKBUF_UNLOCK(&so->so_snd);
1313  error = EMSGSIZE;
1314  goto release;
1315  }
1316  if (space < resid + clen &&
1317  (atomic || space < so->so_snd.sb_lowat || space < clen)) {
1318  if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
1319  SOCKBUF_UNLOCK(&so->so_snd);
1320  error = EWOULDBLOCK;
1321  goto release;
1322  }
1323  error = sbwait(&so->so_snd);
1324  SOCKBUF_UNLOCK(&so->so_snd);
1325  if (error)
1326  goto release;
1327  goto restart;
1328  }
1329  SOCKBUF_UNLOCK(&so->so_snd);
1330  space -= clen;
1331  do {
1332  if (uio == NULL) {
1333  resid = 0;
1334  if (flags & MSG_EOR)
1335  top->m_flags |= M_EOR;
1336  } else {
1337 #ifdef ZERO_COPY_SOCKETS
1338  error = sosend_copyin(uio, &top, atomic,
1339  &space, flags);
1340  if (error != 0)
1341  goto release;
1342 #else
1343  /*
1344  * Copy the data from userland into a mbuf
1345  * chain. If no data is to be copied in,
1346  * a single empty mbuf is returned.
1347  */
1348  top = m_uiotombuf(uio, M_WAITOK, space,
1349  (atomic ? max_hdr : 0),
1350  (atomic ? M_PKTHDR : 0) |
1351  ((flags & MSG_EOR) ? M_EOR : 0));
1352  if (top == NULL) {
1353  error = EFAULT; /* only possible error */
1354  goto release;
1355  }
1356  space -= resid - uio->uio_resid;
1357 #endif
1358  resid = uio->uio_resid;
1359  }
1360  if (dontroute) {
1361  SOCK_LOCK(so);
1362  so->so_options |= SO_DONTROUTE;
1363  SOCK_UNLOCK(so);
1364  }
1365  /*
1366  * XXX all the SBS_CANTSENDMORE checks previously
1367  * done could be out of date. We could have recieved
1368  * a reset packet in an interrupt or maybe we slept
1369  * while doing page faults in uiomove() etc. We
1370  * could probably recheck again inside the locking
1371  * protection here, but there are probably other
1372  * places that this also happens. We must rethink
1373  * this.
1374  */
1375  VNET_SO_ASSERT(so);
1376  error = (*so->so_proto->pr_usrreqs->pru_send)(so,
1377  (flags & MSG_OOB) ? PRUS_OOB :
1378  /*
1379  * If the user set MSG_EOF, the protocol understands
1380  * this flag and nothing left to send then use
1381  * PRU_SEND_EOF instead of PRU_SEND.
1382  */
1383  ((flags & MSG_EOF) &&
1384  (so->so_proto->pr_flags & PR_IMPLOPCL) &&
1385  (resid <= 0)) ?
1386  PRUS_EOF :
1387  /* If there is more to send set PRUS_MORETOCOME. */
1388  (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
1389  top, addr, control, td);
1390  if (dontroute) {
1391  SOCK_LOCK(so);
1392  so->so_options &= ~SO_DONTROUTE;
1393  SOCK_UNLOCK(so);
1394  }
1395  clen = 0;
1396  control = NULL;
1397  top = NULL;
1398  if (error)
1399  goto release;
1400  } while (resid && space > 0);
1401  } while (resid);
1402 
1403 release:
1404  sbunlock(&so->so_snd);
1405 out:
1406  if (top != NULL)
1407  m_freem(top);
1408  if (control != NULL)
1409  m_freem(control);
1410  return (error);
1411 }
1412 
1413 int
1414 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
1415  struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
1416 {
1417  int error;
1418 
1419  CURVNET_SET(so->so_vnet);
1420  error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
1421  control, flags, td);
1422  CURVNET_RESTORE();
1423  return (error);
1424 }
1425 
1426 /*
1427  * The part of soreceive() that implements reading non-inline out-of-band
1428  * data from a socket. For more complete comments, see soreceive(), from
1429  * which this code originated.
1430  *
1431  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
1432  * unable to return an mbuf chain to the caller.
1433  */
1434 static int
1435 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
1436 {
1437  struct protosw *pr = so->so_proto;
1438  struct mbuf *m;
1439  int error;
1440 
1441  KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
1442  VNET_SO_ASSERT(so);
1443 
1444  m = m_get(M_WAIT, MT_DATA);
1445  error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
1446  if (error)
1447  goto bad;
1448  do {
1449 #ifdef ZERO_COPY_SOCKETS
1450  if (so_zero_copy_receive) {
1451  int disposable;
1452 
1453  if ((m->m_flags & M_EXT)
1454  && (m->m_ext.ext_type == EXT_DISPOSABLE))
1455  disposable = 1;
1456  else
1457  disposable = 0;
1458 
1459  error = uiomoveco(mtod(m, void *),
1460  min(uio->uio_resid, m->m_len),
1461  uio, disposable);
1462  } else
1463 #endif /* ZERO_COPY_SOCKETS */
1464  error = uiomove(mtod(m, void *),
1465  (int) min(uio->uio_resid, m->m_len), uio);
1466  m = m_free(m);
1467  } while (uio->uio_resid && error == 0 && m);
1468 bad:
1469  if (m != NULL)
1470  m_freem(m);
1471  return (error);
1472 }
1473 
1474 /*
1475  * Following replacement or removal of the first mbuf on the first mbuf chain
1476  * of a socket buffer, push necessary state changes back into the socket
1477  * buffer so that other consumers see the values consistently. 'nextrecord'
1478  * is the callers locally stored value of the original value of
1479  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
1480  * NOTE: 'nextrecord' may be NULL.
1481  */
1482 static __inline void
1483 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
1484 {
1485 
1486  SOCKBUF_LOCK_ASSERT(sb);
1487  /*
1488  * First, update for the new value of nextrecord. If necessary, make
1489  * it the first record.
1490  */
1491  if (sb->sb_mb != NULL)
1492  sb->sb_mb->m_nextpkt = nextrecord;
1493  else
1494  sb->sb_mb = nextrecord;
1495 
1496  /*
1497  * Now update any dependent socket buffer fields to reflect the new
1498  * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the
1499  * addition of a second clause that takes care of the case where
1500  * sb_mb has been updated, but remains the last record.
1501  */
1502  if (sb->sb_mb == NULL) {
1503  sb->sb_mbtail = NULL;
1504  sb->sb_lastrecord = NULL;
1505  } else if (sb->sb_mb->m_nextpkt == NULL)
1506  sb->sb_lastrecord = sb->sb_mb;
1507 }
1508 
1509 
1510 /*
1511  * Implement receive operations on a socket. We depend on the way that
1512  * records are added to the sockbuf by sbappend. In particular, each record
1513  * (mbufs linked through m_next) must begin with an address if the protocol
1514  * so specifies, followed by an optional mbuf or mbufs containing ancillary
1515  * data, and then zero or more mbufs of data. In order to allow parallelism
1516  * between network receive and copying to user space, as well as avoid
1517  * sleeping with a mutex held, we release the socket buffer mutex during the
1518  * user space copy. Although the sockbuf is locked, new data may still be
1519  * appended, and thus we must maintain consistency of the sockbuf during that
1520  * time.
1521  *
1522  * The caller may receive the data as a single mbuf chain by supplying an
1523  * mbuf **mp0 for use in returning the chain. The uio is then used only for
1524  * the count in uio_resid.
1525  */
1526 int
1527 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
1528  struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1529 {
1530  struct mbuf *m, **mp;
1531  int flags, error, offset;
1532  ssize_t len;
1533  struct protosw *pr = so->so_proto;
1534  struct mbuf *nextrecord;
1535  int moff, type = 0;
1536  ssize_t orig_resid = uio->uio_resid;
1537 
1538  mp = mp0;
1539  if (psa != NULL)
1540  *psa = NULL;
1541  if (controlp != NULL)
1542  *controlp = NULL;
1543  if (flagsp != NULL)
1544  flags = *flagsp &~ MSG_EOR;
1545  else
1546  flags = 0;
1547  if (flags & MSG_OOB)
1548  return (soreceive_rcvoob(so, uio, flags));
1549  if (mp != NULL)
1550  *mp = NULL;
1551  if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
1552  && uio->uio_resid) {
1553  VNET_SO_ASSERT(so);
1554  (*pr->pr_usrreqs->pru_rcvd)(so, 0);
1555  }
1556 
1557  error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
1558  if (error)
1559  return (error);
1560 
1561 restart:
1562  SOCKBUF_LOCK(&so->so_rcv);
1563  m = so->so_rcv.sb_mb;
1564  /*
1565  * If we have less data than requested, block awaiting more (subject
1566  * to any timeout) if:
1567  * 1. the current count is less than the low water mark, or
1568  * 2. MSG_DONTWAIT is not set
1569  */
1570  if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1571  so->so_rcv.sb_cc < uio->uio_resid) &&
1572  so->so_rcv.sb_cc < so->so_rcv.sb_lowat &&
1573  m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1574  KASSERT(m != NULL || !so->so_rcv.sb_cc,
1575  ("receive: m == %p so->so_rcv.sb_cc == %u",
1576  m, so->so_rcv.sb_cc));
1577  if (so->so_error) {
1578  if (m != NULL)
1579  goto dontblock;
1580  error = so->so_error;
1581  if ((flags & MSG_PEEK) == 0)
1582  so->so_error = 0;
1583  SOCKBUF_UNLOCK(&so->so_rcv);
1584  goto release;
1585  }
1586  SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1587  if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1588  if (m == NULL) {
1589  SOCKBUF_UNLOCK(&so->so_rcv);
1590  goto release;
1591  } else
1592  goto dontblock;
1593  }
1594  for (; m != NULL; m = m->m_next)
1595  if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1596  m = so->so_rcv.sb_mb;
1597  goto dontblock;
1598  }
1599  if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1600  (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1601  SOCKBUF_UNLOCK(&so->so_rcv);
1602  error = ENOTCONN;
1603  goto release;
1604  }
1605  if (uio->uio_resid == 0) {
1606  SOCKBUF_UNLOCK(&so->so_rcv);
1607  goto release;
1608  }
1609  if ((so->so_state & SS_NBIO) ||
1610  (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1611  SOCKBUF_UNLOCK(&so->so_rcv);
1612  error = EWOULDBLOCK;
1613  goto release;
1614  }
1615  SBLASTRECORDCHK(&so->so_rcv);
1616  SBLASTMBUFCHK(&so->so_rcv);
1617  error = sbwait(&so->so_rcv);
1618  SOCKBUF_UNLOCK(&so->so_rcv);
1619  if (error)
1620  goto release;
1621  goto restart;
1622  }
1623 dontblock:
1624  /*
1625  * From this point onward, we maintain 'nextrecord' as a cache of the
1626  * pointer to the next record in the socket buffer. We must keep the
1627  * various socket buffer pointers and local stack versions of the
1628  * pointers in sync, pushing out modifications before dropping the
1629  * socket buffer mutex, and re-reading them when picking it up.
1630  *
1631  * Otherwise, we will race with the network stack appending new data
1632  * or records onto the socket buffer by using inconsistent/stale
1633  * versions of the field, possibly resulting in socket buffer
1634  * corruption.
1635  *
1636  * By holding the high-level sblock(), we prevent simultaneous
1637  * readers from pulling off the front of the socket buffer.
1638  */
1639  SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1640  if (uio->uio_td)
1641  uio->uio_td->td_ru.ru_msgrcv++;
1642  KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1643  SBLASTRECORDCHK(&so->so_rcv);
1644  SBLASTMBUFCHK(&so->so_rcv);
1645  nextrecord = m->m_nextpkt;
1646  if (pr->pr_flags & PR_ADDR) {
1647  KASSERT(m->m_type == MT_SONAME,
1648  ("m->m_type == %d", m->m_type));
1649  orig_resid = 0;
1650  if (psa != NULL)
1651  *psa = sodupsockaddr(mtod(m, struct sockaddr *),
1652  M_NOWAIT);
1653  if (flags & MSG_PEEK) {
1654  m = m->m_next;
1655  } else {
1656  sbfree(&so->so_rcv, m);
1657  so->so_rcv.sb_mb = m_free(m);
1658  m = so->so_rcv.sb_mb;
1659  sockbuf_pushsync(&so->so_rcv, nextrecord);
1660  }
1661  }
1662 
1663  /*
1664  * Process one or more MT_CONTROL mbufs present before any data mbufs
1665  * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1666  * just copy the data; if !MSG_PEEK, we call into the protocol to
1667  * perform externalization (or freeing if controlp == NULL).
1668  */
1669  if (m != NULL && m->m_type == MT_CONTROL) {
1670  struct mbuf *cm = NULL, *cmn;
1671  struct mbuf **cme = &cm;
1672 
1673  do {
1674  if (flags & MSG_PEEK) {
1675  if (controlp != NULL) {
1676  *controlp = m_copy(m, 0, m->m_len);
1677  controlp = &(*controlp)->m_next;
1678  }
1679  m = m->m_next;
1680  } else {
1681  sbfree(&so->so_rcv, m);
1682  so->so_rcv.sb_mb = m->m_next;
1683  m->m_next = NULL;
1684  *cme = m;
1685  cme = &(*cme)->m_next;
1686  m = so->so_rcv.sb_mb;
1687  }
1688  } while (m != NULL && m->m_type == MT_CONTROL);
1689  if ((flags & MSG_PEEK) == 0)
1690  sockbuf_pushsync(&so->so_rcv, nextrecord);
1691  while (cm != NULL) {
1692  cmn = cm->m_next;
1693  cm->m_next = NULL;
1694  if (pr->pr_domain->dom_externalize != NULL) {
1695  SOCKBUF_UNLOCK(&so->so_rcv);
1696  VNET_SO_ASSERT(so);
1697  error = (*pr->pr_domain->dom_externalize)
1698  (cm, controlp);
1699  SOCKBUF_LOCK(&so->so_rcv);
1700  } else if (controlp != NULL)
1701  *controlp = cm;
1702  else
1703  m_freem(cm);
1704  if (controlp != NULL) {
1705  orig_resid = 0;
1706  while (*controlp != NULL)
1707  controlp = &(*controlp)->m_next;
1708  }
1709  cm = cmn;
1710  }
1711  if (m != NULL)
1712  nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1713  else
1714  nextrecord = so->so_rcv.sb_mb;
1715  orig_resid = 0;
1716  }
1717  if (m != NULL) {
1718  if ((flags & MSG_PEEK) == 0) {
1719  KASSERT(m->m_nextpkt == nextrecord,
1720  ("soreceive: post-control, nextrecord !sync"));
1721  if (nextrecord == NULL) {
1722  KASSERT(so->so_rcv.sb_mb == m,
1723  ("soreceive: post-control, sb_mb!=m"));
1724  KASSERT(so->so_rcv.sb_lastrecord == m,
1725  ("soreceive: post-control, lastrecord!=m"));
1726  }
1727  }
1728  type = m->m_type;
1729  if (type == MT_OOBDATA)
1730  flags |= MSG_OOB;
1731  } else {
1732  if ((flags & MSG_PEEK) == 0) {
1733  KASSERT(so->so_rcv.sb_mb == nextrecord,
1734  ("soreceive: sb_mb != nextrecord"));
1735  if (so->so_rcv.sb_mb == NULL) {
1736  KASSERT(so->so_rcv.sb_lastrecord == NULL,
1737  ("soreceive: sb_lastercord != NULL"));
1738  }
1739  }
1740  }
1741  SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1742  SBLASTRECORDCHK(&so->so_rcv);
1743  SBLASTMBUFCHK(&so->so_rcv);
1744 
1745  /*
1746  * Now continue to read any data mbufs off of the head of the socket
1747  * buffer until the read request is satisfied. Note that 'type' is
1748  * used to store the type of any mbuf reads that have happened so far
1749  * such that soreceive() can stop reading if the type changes, which
1750  * causes soreceive() to return only one of regular data and inline
1751  * out-of-band data in a single socket receive operation.
1752  */
1753  moff = 0;
1754  offset = 0;
1755  while (m != NULL && uio->uio_resid > 0 && error == 0) {
1756  /*
1757  * If the type of mbuf has changed since the last mbuf
1758  * examined ('type'), end the receive operation.
1759  */
1760  SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1761  if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
1762  if (type != m->m_type)
1763  break;
1764  } else if (type == MT_OOBDATA)
1765  break;
1766  else
1767  KASSERT(m->m_type == MT_DATA,
1768  ("m->m_type == %d", m->m_type));
1769  so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1770  len = uio->uio_resid;
1771  if (so->so_oobmark && len > so->so_oobmark - offset)
1772  len = so->so_oobmark - offset;
1773  if (len > m->m_len - moff)
1774  len = m->m_len - moff;
1775  /*
1776  * If mp is set, just pass back the mbufs. Otherwise copy
1777  * them out via the uio, then free. Sockbuf must be
1778  * consistent here (points to current mbuf, it points to next
1779  * record) when we drop priority; we must note any additions
1780  * to the sockbuf when we block interrupts again.
1781  */
1782  if (mp == NULL) {
1783  SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1784  SBLASTRECORDCHK(&so->so_rcv);
1785  SBLASTMBUFCHK(&so->so_rcv);
1786  SOCKBUF_UNLOCK(&so->so_rcv);
1787 #ifdef ZERO_COPY_SOCKETS
1788  if (so_zero_copy_receive) {
1789  int disposable;
1790 
1791  if ((m->m_flags & M_EXT)
1792  && (m->m_ext.ext_type == EXT_DISPOSABLE))
1793  disposable = 1;
1794  else
1795  disposable = 0;
1796 
1797  error = uiomoveco(mtod(m, char *) + moff,
1798  (int)len, uio,
1799  disposable);
1800  } else
1801 #endif /* ZERO_COPY_SOCKETS */
1802  error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1803  SOCKBUF_LOCK(&so->so_rcv);
1804  if (error) {
1805  /*
1806  * The MT_SONAME mbuf has already been removed
1807  * from the record, so it is necessary to
1808  * remove the data mbufs, if any, to preserve
1809  * the invariant in the case of PR_ADDR that
1810  * requires MT_SONAME mbufs at the head of
1811  * each record.
1812  */
1813  if (m && pr->pr_flags & PR_ATOMIC &&
1814  ((flags & MSG_PEEK) == 0))
1815  (void)sbdroprecord_locked(&so->so_rcv);
1816  SOCKBUF_UNLOCK(&so->so_rcv);
1817  goto release;
1818  }
1819  } else
1820  uio->uio_resid -= len;
1821  SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1822  if (len == m->m_len - moff) {
1823  if (m->m_flags & M_EOR)
1824  flags |= MSG_EOR;
1825  if (flags & MSG_PEEK) {
1826  m = m->m_next;
1827  moff = 0;
1828  } else {
1829  nextrecord = m->m_nextpkt;
1830  sbfree(&so->so_rcv, m);
1831  if (mp != NULL) {
1832  *mp = m;
1833  mp = &m->m_next;
1834  so->so_rcv.sb_mb = m = m->m_next;
1835  *mp = NULL;
1836  } else {
1837  so->so_rcv.sb_mb = m_free(m);
1838  m = so->so_rcv.sb_mb;
1839  }
1840  sockbuf_pushsync(&so->so_rcv, nextrecord);
1841  SBLASTRECORDCHK(&so->so_rcv);
1842  SBLASTMBUFCHK(&so->so_rcv);
1843  }
1844  } else {
1845  if (flags & MSG_PEEK)
1846  moff += len;
1847  else {
1848  if (mp != NULL) {
1849  int copy_flag;
1850 
1851  if (flags & MSG_DONTWAIT)
1852  copy_flag = M_DONTWAIT;
1853  else
1854  copy_flag = M_WAIT;
1855  if (copy_flag == M_WAIT)
1856  SOCKBUF_UNLOCK(&so->so_rcv);
1857  *mp = m_copym(m, 0, len, copy_flag);
1858  if (copy_flag == M_WAIT)
1859  SOCKBUF_LOCK(&so->so_rcv);
1860  if (*mp == NULL) {
1861  /*
1862  * m_copym() couldn't
1863  * allocate an mbuf. Adjust
1864  * uio_resid back (it was
1865  * adjusted down by len
1866  * bytes, which we didn't end
1867  * up "copying" over).
1868  */
1869  uio->uio_resid += len;
1870  break;
1871  }
1872  }
1873  m->m_data += len;
1874  m->m_len -= len;
1875  so->so_rcv.sb_cc -= len;
1876  }
1877  }
1878  SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1879  if (so->so_oobmark) {
1880  if ((flags & MSG_PEEK) == 0) {
1881  so->so_oobmark -= len;
1882  if (so->so_oobmark == 0) {
1883  so->so_rcv.sb_state |= SBS_RCVATMARK;
1884  break;
1885  }
1886  } else {
1887  offset += len;
1888  if (offset == so->so_oobmark)
1889  break;
1890  }
1891  }
1892  if (flags & MSG_EOR)
1893  break;
1894  /*
1895  * If the MSG_WAITALL flag is set (for non-atomic socket), we
1896  * must not quit until "uio->uio_resid == 0" or an error
1897  * termination. If a signal/timeout occurs, return with a
1898  * short count but without error. Keep sockbuf locked
1899  * against other readers.
1900  */
1901  while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1902  !sosendallatonce(so) && nextrecord == NULL) {
1903  SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1904  if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1905  break;
1906  /*
1907  * Notify the protocol that some data has been
1908  * drained before blocking.
1909  */
1910  if (pr->pr_flags & PR_WANTRCVD) {
1911  SOCKBUF_UNLOCK(&so->so_rcv);
1912  VNET_SO_ASSERT(so);
1913  (*pr->pr_usrreqs->pru_rcvd)(so, flags);
1914  SOCKBUF_LOCK(&so->so_rcv);
1915  }
1916  SBLASTRECORDCHK(&so->so_rcv);
1917  SBLASTMBUFCHK(&so->so_rcv);
1918  /*
1919  * We could receive some data while was notifying
1920  * the protocol. Skip blocking in this case.
1921  */
1922  if (so->so_rcv.sb_mb == NULL) {
1923  error = sbwait(&so->so_rcv);
1924  if (error) {
1925  SOCKBUF_UNLOCK(&so->so_rcv);
1926  goto release;
1927  }
1928  }
1929  m = so->so_rcv.sb_mb;
1930  if (m != NULL)
1931  nextrecord = m->m_nextpkt;
1932  }
1933  }
1934 
1935  SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1936  if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1937  flags |= MSG_TRUNC;
1938  if ((flags & MSG_PEEK) == 0)
1939  (void) sbdroprecord_locked(&so->so_rcv);
1940  }
1941  if ((flags & MSG_PEEK) == 0) {
1942  if (m == NULL) {
1943  /*
1944  * First part is an inline SB_EMPTY_FIXUP(). Second
1945  * part makes sure sb_lastrecord is up-to-date if
1946  * there is still data in the socket buffer.
1947  */
1948  so->so_rcv.sb_mb = nextrecord;
1949  if (so->so_rcv.sb_mb == NULL) {
1950  so->so_rcv.sb_mbtail = NULL;
1951  so->so_rcv.sb_lastrecord = NULL;
1952  } else if (nextrecord->m_nextpkt == NULL)
1953  so->so_rcv.sb_lastrecord = nextrecord;
1954  }
1955  SBLASTRECORDCHK(&so->so_rcv);
1956  SBLASTMBUFCHK(&so->so_rcv);
1957  /*
1958  * If soreceive() is being done from the socket callback,
1959  * then don't need to generate ACK to peer to update window,
1960  * since ACK will be generated on return to TCP.
1961  */
1962  if (!(flags & MSG_SOCALLBCK) &&
1963  (pr->pr_flags & PR_WANTRCVD)) {
1964  SOCKBUF_UNLOCK(&so->so_rcv);
1965  VNET_SO_ASSERT(so);
1966  (*pr->pr_usrreqs->pru_rcvd)(so, flags);
1967  SOCKBUF_LOCK(&so->so_rcv);
1968  }
1969  }
1970  SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1971  if (orig_resid == uio->uio_resid && orig_resid &&
1972  (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1973  SOCKBUF_UNLOCK(&so->so_rcv);
1974  goto restart;
1975  }
1976  SOCKBUF_UNLOCK(&so->so_rcv);
1977 
1978  if (flagsp != NULL)
1979  *flagsp |= flags;
1980 release:
1981  sbunlock(&so->so_rcv);
1982  return (error);
1983 }
1984 
1985 /*
1986  * Optimized version of soreceive() for stream (TCP) sockets.
1987  * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled.
1988  */
1989 int
1990 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
1991  struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1992 {
1993  int len = 0, error = 0, flags, oresid;
1994  struct sockbuf *sb;
1995  struct mbuf *m, *n = NULL;
1996 
1997  /* We only do stream sockets. */
1998  if (so->so_type != SOCK_STREAM)
1999  return (EINVAL);
2000  if (psa != NULL)
2001  *psa = NULL;
2002  if (controlp != NULL)
2003  return (EINVAL);
2004  if (flagsp != NULL)
2005  flags = *flagsp &~ MSG_EOR;
2006  else
2007  flags = 0;
2008  if (flags & MSG_OOB)
2009  return (soreceive_rcvoob(so, uio, flags));
2010  if (mp0 != NULL)
2011  *mp0 = NULL;
2012 
2013  sb = &so->so_rcv;
2014 
2015  /* Prevent other readers from entering the socket. */
2016  error = sblock(sb, SBLOCKWAIT(flags));
2017  if (error)
2018  goto out;
2019  SOCKBUF_LOCK(sb);
2020 
2021  /* Easy one, no space to copyout anything. */
2022  if (uio->uio_resid == 0) {
2023  error = EINVAL;
2024  goto out;
2025  }
2026  oresid = uio->uio_resid;
2027 
2028  /* We will never ever get anything unless we are or were connected. */
2029  if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
2030  error = ENOTCONN;
2031  goto out;
2032  }
2033 
2034 restart:
2035  SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2036 
2037  /* Abort if socket has reported problems. */
2038  if (so->so_error) {
2039  if (sb->sb_cc > 0)
2040  goto deliver;
2041  if (oresid > uio->uio_resid)
2042  goto out;
2043  error = so->so_error;
2044  if (!(flags & MSG_PEEK))
2045  so->so_error = 0;
2046  goto out;
2047  }
2048 
2049  /* Door is closed. Deliver what is left, if any. */
2050  if (sb->sb_state & SBS_CANTRCVMORE) {
2051  if (sb->sb_cc > 0)
2052  goto deliver;
2053  else
2054  goto out;
2055  }
2056 
2057  /* Socket buffer is empty and we shall not block. */
2058  if (sb->sb_cc == 0 &&
2059  ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
2060  error = EAGAIN;
2061  goto out;
2062  }
2063 
2064  /* Socket buffer got some data that we shall deliver now. */
2065  if (sb->sb_cc > 0 && !(flags & MSG_WAITALL) &&
2066  ((so->so_state & SS_NBIO) ||
2067  (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
2068  sb->sb_cc >= sb->sb_lowat ||
2069  sb->sb_cc >= uio->uio_resid ||
2070  sb->sb_cc >= sb->sb_hiwat) ) {
2071  goto deliver;
2072  }
2073 
2074  /* On MSG_WAITALL we must wait until all data or error arrives. */
2075  if ((flags & MSG_WAITALL) &&
2076  (sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_hiwat))
2077  goto deliver;
2078 
2079  /*
2080  * Wait and block until (more) data comes in.
2081  * NB: Drops the sockbuf lock during wait.
2082  */
2083  error = sbwait(sb);
2084  if (error)
2085  goto out;
2086  goto restart;
2087 
2088 deliver:
2089  SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2090  KASSERT(sb->sb_cc > 0, ("%s: sockbuf empty", __func__));
2091  KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
2092 
2093  /* Statistics. */
2094  if (uio->uio_td)
2095  uio->uio_td->td_ru.ru_msgrcv++;
2096 
2097  /* Fill uio until full or current end of socket buffer is reached. */
2098  len = min(uio->uio_resid, sb->sb_cc);
2099  if (mp0 != NULL) {
2100  /* Dequeue as many mbufs as possible. */
2101  if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
2102  if (*mp0 == NULL)
2103  *mp0 = sb->sb_mb;
2104  else
2105  m_cat(*mp0, sb->sb_mb);
2106  for (m = sb->sb_mb;
2107  m != NULL && m->m_len <= len;
2108  m = m->m_next) {
2109  len -= m->m_len;
2110  uio->uio_resid -= m->m_len;
2111  sbfree(sb, m);
2112  n = m;
2113  }
2114  n->m_next = NULL;
2115  sb->sb_mb = m;
2116  sb->sb_lastrecord = sb->sb_mb;
2117  if (sb->sb_mb == NULL)
2118  SB_EMPTY_FIXUP(sb);
2119  }
2120  /* Copy the remainder. */
2121  if (len > 0) {
2122  KASSERT(sb->sb_mb != NULL,
2123  ("%s: len > 0 && sb->sb_mb empty", __func__));
2124 
2125  m = m_copym(sb->sb_mb, 0, len, M_DONTWAIT);
2126  if (m == NULL)
2127  len = 0; /* Don't flush data from sockbuf. */
2128  else
2129  uio->uio_resid -= len;
2130  if (*mp0 != NULL)
2131  m_cat(*mp0, m);
2132  else
2133  *mp0 = m;
2134  if (*mp0 == NULL) {
2135  error = ENOBUFS;
2136  goto out;
2137  }
2138  }
2139  } else {
2140  /* NB: Must unlock socket buffer as uiomove may sleep. */
2141  SOCKBUF_UNLOCK(sb);
2142  error = m_mbuftouio(uio, sb->sb_mb, len);
2143  SOCKBUF_LOCK(sb);
2144  if (error)
2145  goto out;
2146  }
2147  SBLASTRECORDCHK(sb);
2148  SBLASTMBUFCHK(sb);
2149 
2150  /*
2151  * Remove the delivered data from the socket buffer unless we
2152  * were only peeking.
2153  */
2154  if (!(flags & MSG_PEEK)) {
2155  if (len > 0)
2156  sbdrop_locked(sb, len);
2157 
2158  /* Notify protocol that we drained some data. */
2159  if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
2160  (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
2161  !(flags & MSG_SOCALLBCK))) {
2162  SOCKBUF_UNLOCK(sb);
2163  VNET_SO_ASSERT(so);
2164  (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
2165  SOCKBUF_LOCK(sb);
2166  }
2167  }
2168 
2169  /*
2170  * For MSG_WAITALL we may have to loop again and wait for
2171  * more data to come in.
2172  */
2173  if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
2174  goto restart;
2175 out:
2176  SOCKBUF_LOCK_ASSERT(sb);
2177  SBLASTRECORDCHK(sb);
2178  SBLASTMBUFCHK(sb);
2179  SOCKBUF_UNLOCK(sb);
2180  sbunlock(sb);
2181  return (error);
2182 }
2183 
2184 /*
2185  * Optimized version of soreceive() for simple datagram cases from userspace.
2186  * Unlike in the stream case, we're able to drop a datagram if copyout()
2187  * fails, and because we handle datagrams atomically, we don't need to use a
2188  * sleep lock to prevent I/O interlacing.
2189  */
2190 int
2191 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
2192  struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2193 {
2194  struct mbuf *m, *m2;
2195  int flags, error;
2196  ssize_t len;
2197  struct protosw *pr = so->so_proto;
2198  struct mbuf *nextrecord;
2199 
2200  if (psa != NULL)
2201  *psa = NULL;
2202  if (controlp != NULL)
2203  *controlp = NULL;
2204  if (flagsp != NULL)
2205  flags = *flagsp &~ MSG_EOR;
2206  else
2207  flags = 0;
2208 
2209  /*
2210  * For any complicated cases, fall back to the full
2211  * soreceive_generic().
2212  */
2213  if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
2214  return (soreceive_generic(so, psa, uio, mp0, controlp,
2215  flagsp));
2216 
2217  /*
2218  * Enforce restrictions on use.
2219  */
2220  KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
2221  ("soreceive_dgram: wantrcvd"));
2222  KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
2223  KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
2224  ("soreceive_dgram: SBS_RCVATMARK"));
2225  KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
2226  ("soreceive_dgram: P_CONNREQUIRED"));
2227 
2228  /*
2229  * Loop blocking while waiting for a datagram.
2230  */
2231  SOCKBUF_LOCK(&so->so_rcv);
2232  while ((m = so->so_rcv.sb_mb) == NULL) {
2233  KASSERT(so->so_rcv.sb_cc == 0,
2234  ("soreceive_dgram: sb_mb NULL but sb_cc %u",
2235  so->so_rcv.sb_cc));
2236  if (so->so_error) {
2237  error = so->so_error;
2238  so->so_error = 0;
2239  SOCKBUF_UNLOCK(&so->so_rcv);
2240  return (error);
2241  }
2242  if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
2243  uio->uio_resid == 0) {
2244  SOCKBUF_UNLOCK(&so->so_rcv);
2245  return (0);
2246  }
2247  if ((so->so_state & SS_NBIO) ||
2248  (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2249  SOCKBUF_UNLOCK(&so->so_rcv);
2250  return (EWOULDBLOCK);
2251  }
2252  SBLASTRECORDCHK(&so->so_rcv);
2253  SBLASTMBUFCHK(&so->so_rcv);
2254  error = sbwait(&so->so_rcv);
2255  if (error) {
2256  SOCKBUF_UNLOCK(&so->so_rcv);
2257  return (error);
2258  }
2259  }
2260  SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2261 
2262  if (uio->uio_td)
2263  uio->uio_td->td_ru.ru_msgrcv++;
2264  SBLASTRECORDCHK(&so->so_rcv);
2265  SBLASTMBUFCHK(&so->so_rcv);
2266  nextrecord = m->m_nextpkt;
2267  if (nextrecord == NULL) {
2268  KASSERT(so->so_rcv.sb_lastrecord == m,
2269  ("soreceive_dgram: lastrecord != m"));
2270  }
2271 
2272  KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
2273  ("soreceive_dgram: m_nextpkt != nextrecord"));
2274 
2275  /*
2276  * Pull 'm' and its chain off the front of the packet queue.
2277  */
2278  so->so_rcv.sb_mb = NULL;
2279  sockbuf_pushsync(&so->so_rcv, nextrecord);
2280 
2281  /*
2282  * Walk 'm's chain and free that many bytes from the socket buffer.
2283  */
2284  for (m2 = m; m2 != NULL; m2 = m2->m_next)
2285  sbfree(&so->so_rcv, m2);
2286 
2287  /*
2288  * Do a few last checks before we let go of the lock.
2289  */
2290  SBLASTRECORDCHK(&so->so_rcv);
2291  SBLASTMBUFCHK(&so->so_rcv);
2292  SOCKBUF_UNLOCK(&so->so_rcv);
2293 
2294  if (pr->pr_flags & PR_ADDR) {
2295  KASSERT(m->m_type == MT_SONAME,
2296  ("m->m_type == %d", m->m_type));
2297  if (psa != NULL)
2298  *psa = sodupsockaddr(mtod(m, struct sockaddr *),
2299  M_NOWAIT);
2300  m = m_free(m);
2301  }
2302  if (m == NULL) {
2303  /* XXXRW: Can this happen? */
2304  return (0);
2305  }
2306 
2307  /*
2308  * Packet to copyout() is now in 'm' and it is disconnected from the
2309  * queue.
2310  *
2311  * Process one or more MT_CONTROL mbufs present before any data mbufs
2312  * in the first mbuf chain on the socket buffer. We call into the
2313  * protocol to perform externalization (or freeing if controlp ==
2314  * NULL). In some cases there can be only MT_CONTROL mbufs without
2315  * MT_DATA mbufs.
2316  */
2317  if (m->m_type == MT_CONTROL) {
2318  struct mbuf *cm = NULL, *cmn;
2319  struct mbuf **cme = &cm;
2320 
2321  do {
2322  m2 = m->m_next;
2323  m->m_next = NULL;
2324  *cme = m;
2325  cme = &(*cme)->m_next;
2326  m = m2;
2327  } while (m != NULL && m->m_type == MT_CONTROL);
2328  while (cm != NULL) {
2329  cmn = cm->m_next;
2330  cm->m_next = NULL;
2331  if (pr->pr_domain->dom_externalize != NULL) {
2332  error = (*pr->pr_domain->dom_externalize)
2333  (cm, controlp);
2334  } else if (controlp != NULL)
2335  *controlp = cm;
2336  else
2337  m_freem(cm);
2338  if (controlp != NULL) {
2339  while (*controlp != NULL)
2340  controlp = &(*controlp)->m_next;
2341  }
2342  cm = cmn;
2343  }
2344  }
2345  KASSERT(m == NULL || m->m_type == MT_DATA,
2346  ("soreceive_dgram: !data"));
2347  while (m != NULL && uio->uio_resid > 0) {
2348  len = uio->uio_resid;
2349  if (len > m->m_len)
2350  len = m->m_len;
2351  error = uiomove(mtod(m, char *), (int)len, uio);
2352  if (error) {
2353  m_freem(m);
2354  return (error);
2355  }
2356  if (len == m->m_len)
2357  m = m_free(m);
2358  else {
2359  m->m_data += len;
2360  m->m_len -= len;
2361  }
2362  }
2363  if (m != NULL) {
2364  flags |= MSG_TRUNC;
2365  m_freem(m);
2366  }
2367  if (flagsp != NULL)
2368  *flagsp |= flags;
2369  return (0);
2370 }
2371 
2372 int
2373 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
2374  struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2375 {
2376  int error;
2377 
2378  CURVNET_SET(so->so_vnet);
2379  error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
2380  controlp, flagsp));
2381  CURVNET_RESTORE();
2382  return (error);
2383 }
2384 
2385 int
2386 soshutdown(struct socket *so, int how)
2387 {
2388  struct protosw *pr = so->so_proto;
2389  int error;
2390 
2391  if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
2392  return (EINVAL);
2393 
2394  CURVNET_SET(so->so_vnet);
2395  if (pr->pr_usrreqs->pru_flush != NULL) {
2396  (*pr->pr_usrreqs->pru_flush)(so, how);
2397  }
2398  if (how != SHUT_WR)
2399  sorflush(so);
2400  if (how != SHUT_RD) {
2401  error = (*pr->pr_usrreqs->pru_shutdown)(so);
2402  wakeup(&so->so_timeo);
2403  CURVNET_RESTORE();
2404  return (error);
2405  }
2406  wakeup(&so->so_timeo);
2407  CURVNET_RESTORE();
2408  return (0);
2409 }
2410 
2411 void
2412 sorflush(struct socket *so)
2413 {
2414  struct sockbuf *sb = &so->so_rcv;
2415  struct protosw *pr = so->so_proto;
2416  struct sockbuf asb;
2417 
2418  VNET_SO_ASSERT(so);
2419 
2420  /*
2421  * In order to avoid calling dom_dispose with the socket buffer mutex
2422  * held, and in order to generally avoid holding the lock for a long
2423  * time, we make a copy of the socket buffer and clear the original
2424  * (except locks, state). The new socket buffer copy won't have
2425  * initialized locks so we can only call routines that won't use or
2426  * assert those locks.
2427  *
2428  * Dislodge threads currently blocked in receive and wait to acquire
2429  * a lock against other simultaneous readers before clearing the
2430  * socket buffer. Don't let our acquire be interrupted by a signal
2431  * despite any existing socket disposition on interruptable waiting.
2432  */
2433  socantrcvmore(so);
2434  (void) sblock(sb, SBL_WAIT | SBL_NOINTR);
2435 
2436  /*
2437  * Invalidate/clear most of the sockbuf structure, but leave selinfo
2438  * and mutex data unchanged.
2439  */
2440  SOCKBUF_LOCK(sb);
2441  bzero(&asb, offsetof(struct sockbuf, sb_startzero));
2442  bcopy(&sb->sb_startzero, &asb.sb_startzero,
2443  sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2444  bzero(&sb->sb_startzero,
2445  sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
2446  SOCKBUF_UNLOCK(sb);
2447  sbunlock(sb);
2448 
2449  /*
2450  * Dispose of special rights and flush the socket buffer. Don't call
2451  * any unsafe routines (that rely on locks being initialized) on asb.
2452  */
2453  if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
2454  (*pr->pr_domain->dom_dispose)(asb.sb_mb);
2455  sbrelease_internal(&asb, so);
2456 }
2457 
2458 /*
2459  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
2460  * additional variant to handle the case where the option value needs to be
2461  * some kind of integer, but not a specific size. In addition to their use
2462  * here, these functions are also called by the protocol-level pr_ctloutput()
2463  * routines.
2464  */
2465 int
2466 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
2467 {
2468  size_t valsize;
2469 
2470  /*
2471  * If the user gives us more than we wanted, we ignore it, but if we
2472  * don't get the minimum length the caller wants, we return EINVAL.
2473  * On success, sopt->sopt_valsize is set to however much we actually
2474  * retrieved.
2475  */
2476  if ((valsize = sopt->sopt_valsize) < minlen)
2477  return EINVAL;
2478  if (valsize > len)
2479  sopt->sopt_valsize = valsize = len;
2480 
2481  if (sopt->sopt_td != NULL)
2482  return (copyin(sopt->sopt_val, buf, valsize));
2483 
2484  bcopy(sopt->sopt_val, buf, valsize);
2485  return (0);
2486 }
2487 
2488 /*
2489  * Kernel version of setsockopt(2).
2490  *
2491  * XXX: optlen is size_t, not socklen_t
2492  */
2493 int
2494 so_setsockopt(struct socket *so, int level, int optname, void *optval,
2495  size_t optlen)
2496 {
2497  struct sockopt sopt;
2498 
2499  sopt.sopt_level = level;
2500  sopt.sopt_name = optname;
2501  sopt.sopt_dir = SOPT_SET;
2502  sopt.sopt_val = optval;
2503  sopt.sopt_valsize = optlen;
2504  sopt.sopt_td = NULL;
2505  return (sosetopt(so, &sopt));
2506 }
2507 
2508 int
2509 sosetopt(struct socket *so, struct sockopt *sopt)
2510 {
2511  int error, optval;
2512  struct linger l;
2513  struct timeval tv;
2514  u_long val;
2515  uint32_t val32;
2516 #ifdef MAC
2517  struct mac extmac;
2518 #endif
2519 
2520  CURVNET_SET(so->so_vnet);
2521  error = 0;
2522  if (sopt->sopt_level != SOL_SOCKET) {
2523  if (so->so_proto->pr_ctloutput != NULL) {
2524  error = (*so->so_proto->pr_ctloutput)(so, sopt);
2525  CURVNET_RESTORE();
2526  return (error);
2527  }
2528  error = ENOPROTOOPT;
2529  } else {
2530  switch (sopt->sopt_name) {
2531 #ifdef INET
2532  case SO_ACCEPTFILTER:
2533  error = do_setopt_accept_filter(so, sopt);
2534  if (error)
2535  goto bad;
2536  break;
2537 #endif
2538  case SO_LINGER:
2539  error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
2540  if (error)
2541  goto bad;
2542 
2543  SOCK_LOCK(so);
2544  so->so_linger = l.l_linger;
2545  if (l.l_onoff)
2546  so->so_options |= SO_LINGER;
2547  else
2548  so->so_options &= ~SO_LINGER;
2549  SOCK_UNLOCK(so);
2550  break;
2551 
2552  case SO_DEBUG:
2553  case SO_KEEPALIVE:
2554  case SO_DONTROUTE:
2555  case SO_USELOOPBACK:
2556  case SO_BROADCAST:
2557  case SO_REUSEADDR:
2558  case SO_REUSEPORT:
2559  case SO_OOBINLINE:
2560  case SO_TIMESTAMP:
2561  case SO_BINTIME:
2562  case SO_NOSIGPIPE:
2563  case SO_NO_DDP:
2564  case SO_NO_OFFLOAD:
2565  error = sooptcopyin(sopt, &optval, sizeof optval,
2566  sizeof optval);
2567  if (error)
2568  goto bad;
2569  SOCK_LOCK(so);
2570  if (optval)
2571  so->so_options |= sopt->sopt_name;
2572  else
2573  so->so_options &= ~sopt->sopt_name;
2574  SOCK_UNLOCK(so);
2575  break;
2576 
2577  case SO_SETFIB:
2578  error = sooptcopyin(sopt, &optval, sizeof optval,
2579  sizeof optval);
2580  if (error)
2581  goto bad;
2582 
2583  if (optval < 0 || optval >= rt_numfibs) {
2584  error = EINVAL;
2585  goto bad;
2586  }
2587  if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
2588  (so->so_proto->pr_domain->dom_family == PF_INET6) ||
2589  (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
2590  so->so_fibnum = optval;
2591  else
2592  so->so_fibnum = 0;
2593  break;
2594 
2595  case SO_USER_COOKIE:
2596  error = sooptcopyin(sopt, &val32, sizeof val32,
2597  sizeof val32);
2598  if (error)
2599  goto bad;
2600  so->so_user_cookie = val32;
2601  break;
2602 
2603  case SO_SNDBUF:
2604  case SO_RCVBUF:
2605  case SO_SNDLOWAT:
2606  case SO_RCVLOWAT:
2607  error = sooptcopyin(sopt, &optval, sizeof optval,
2608  sizeof optval);
2609  if (error)
2610  goto bad;
2611 
2612  /*
2613  * Values < 1 make no sense for any of these options,
2614  * so disallow them.
2615  */
2616  if (optval < 1) {
2617  error = EINVAL;
2618  goto bad;
2619  }
2620 
2621  switch (sopt->sopt_name) {
2622  case SO_SNDBUF:
2623  case SO_RCVBUF:
2624  if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
2625  &so->so_snd : &so->so_rcv, (u_long)optval,
2626  so, curthread) == 0) {
2627  error = ENOBUFS;
2628  goto bad;
2629  }
2630  (sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
2631  &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
2632  break;
2633 
2634  /*
2635  * Make sure the low-water is never greater than the
2636  * high-water.
2637  */
2638  case SO_SNDLOWAT:
2639  SOCKBUF_LOCK(&so->so_snd);
2640  so->so_snd.sb_lowat =
2641  (optval > so->so_snd.sb_hiwat) ?
2642  so->so_snd.sb_hiwat : optval;
2643  SOCKBUF_UNLOCK(&so->so_snd);
2644  break;
2645  case SO_RCVLOWAT:
2646  SOCKBUF_LOCK(&so->so_rcv);
2647  so->so_rcv.sb_lowat =
2648  (optval > so->so_rcv.sb_hiwat) ?
2649  so->so_rcv.sb_hiwat : optval;
2650  SOCKBUF_UNLOCK(&so->so_rcv);
2651  break;
2652  }
2653  break;
2654 
2655  case SO_SNDTIMEO:
2656  case SO_RCVTIMEO:
2657 #ifdef COMPAT_32BIT
2658  if (SV_CURPROC_FLAG(SV_ILP32)) {
2659  struct timeval32 tv32;
2660 
2661  error = sooptcopyin(sopt, &tv32, sizeof tv32,
2662  sizeof tv32);
2663  CP(tv32, tv, tv_sec);
2664  CP(tv32, tv, tv_usec);
2665  } else
2666 #endif
2667  error = sooptcopyin(sopt, &tv, sizeof tv,
2668  sizeof tv);
2669  if (error)
2670  goto bad;
2671  if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
2672  tv.tv_usec >= 1000000) {
2673  error = EDOM;
2674  goto bad;
2675  }
2676  val = tvtohz(&tv);
2677 
2678  switch (sopt->sopt_name) {
2679  case SO_SNDTIMEO:
2680  so->so_snd.sb_timeo = val;
2681  break;
2682  case SO_RCVTIMEO:
2683  so->so_rcv.sb_timeo = val;
2684  break;
2685  }
2686  break;
2687 
2688  case SO_LABEL:
2689 #ifdef MAC
2690  error = sooptcopyin(sopt, &extmac, sizeof extmac,
2691  sizeof extmac);
2692  if (error)
2693  goto bad;
2694  error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
2695  so, &extmac);
2696 #else
2697  error = EOPNOTSUPP;
2698 #endif
2699  break;
2700 
2701  default:
2702  error = ENOPROTOOPT;
2703  break;
2704  }
2705  if (error == 0 && so->so_proto->pr_ctloutput != NULL)
2706  (void)(*so->so_proto->pr_ctloutput)(so, sopt);
2707  }
2708 bad:
2709  CURVNET_RESTORE();
2710  return (error);
2711 }
2712 
2713 /*
2714  * Helper routine for getsockopt.
2715  */
2716 int
2717 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
2718 {
2719  int error;
2720  size_t valsize;
2721 
2722  error = 0;
2723 
2724  /*
2725  * Documented get behavior is that we always return a value, possibly
2726  * truncated to fit in the user's buffer. Traditional behavior is
2727  * that we always tell the user precisely how much we copied, rather
2728  * than something useful like the total amount we had available for
2729  * her. Note that this interface is not idempotent; the entire
2730  * answer must generated ahead of time.
2731  */
2732  valsize = min(len, sopt->sopt_valsize);
2733  sopt->sopt_valsize = valsize;
2734  if (sopt->sopt_val != NULL) {
2735  if (sopt->sopt_td != NULL)
2736  error = copyout(buf, sopt->sopt_val, valsize);
2737  else
2738  bcopy(buf, sopt->sopt_val, valsize);
2739  }
2740  return (error);
2741 }
2742 
2743 int
2744 sogetopt(struct socket *so, struct sockopt *sopt)
2745 {
2746  int error, optval;
2747  struct linger l;
2748  struct timeval tv;
2749 #ifdef MAC
2750  struct mac extmac;
2751 #endif
2752 
2753  CURVNET_SET(so->so_vnet);
2754  error = 0;
2755  if (sopt->sopt_level != SOL_SOCKET) {
2756  if (so->so_proto->pr_ctloutput != NULL)
2757  error = (*so->so_proto->pr_ctloutput)(so, sopt);
2758  else
2759  error = ENOPROTOOPT;
2760  CURVNET_RESTORE();
2761  return (error);
2762  } else {
2763  switch (sopt->sopt_name) {
2764 #ifdef INET
2765  case SO_ACCEPTFILTER:
2766  error = do_getopt_accept_filter(so, sopt);
2767  break;
2768 #endif
2769  case SO_LINGER:
2770  SOCK_LOCK(so);
2771  l.l_onoff = so->so_options & SO_LINGER;
2772  l.l_linger = so->so_linger;
2773  SOCK_UNLOCK(so);
2774  error = sooptcopyout(sopt, &l, sizeof l);
2775  break;
2776 
2777  case SO_USELOOPBACK:
2778  case SO_DONTROUTE:
2779  case SO_DEBUG:
2780  case SO_KEEPALIVE:
2781  case SO_REUSEADDR:
2782  case SO_REUSEPORT:
2783  case SO_BROADCAST:
2784  case SO_OOBINLINE:
2785  case SO_ACCEPTCONN:
2786  case SO_TIMESTAMP:
2787  case SO_BINTIME:
2788  case SO_NOSIGPIPE:
2789  optval = so->so_options & sopt->sopt_name;
2790 integer:
2791  error = sooptcopyout(sopt, &optval, sizeof optval);
2792  break;
2793 
2794  case SO_TYPE:
2795  optval = so->so_type;
2796  goto integer;
2797 
2798  case SO_PROTOCOL:
2799  optval = so->so_proto->pr_protocol;
2800  goto integer;
2801 
2802  case SO_ERROR:
2803  SOCK_LOCK(so);
2804  optval = so->so_error;
2805  so->so_error = 0;
2806  SOCK_UNLOCK(so);
2807  goto integer;
2808 
2809  case SO_SNDBUF:
2810  optval = so->so_snd.sb_hiwat;
2811  goto integer;
2812 
2813  case SO_RCVBUF:
2814  optval = so->so_rcv.sb_hiwat;
2815  goto integer;
2816 
2817  case SO_SNDLOWAT:
2818  optval = so->so_snd.sb_lowat;
2819  goto integer;
2820 
2821  case SO_RCVLOWAT:
2822  optval = so->so_rcv.sb_lowat;
2823  goto integer;
2824 
2825  case SO_SNDTIMEO:
2826  case SO_RCVTIMEO:
2827  optval = (sopt->sopt_name == SO_SNDTIMEO ?
2828  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
2829 
2830  tv.tv_sec = optval / hz;
2831  tv.tv_usec = (optval % hz) * tick;
2832 #ifdef COMPAT_32BIT
2833  if (SV_CURPROC_FLAG(SV_ILP32)) {
2834  struct timeval32 tv32;
2835 
2836  CP(tv, tv32, tv_sec);
2837  CP(tv, tv32, tv_usec);
2838  error = sooptcopyout(sopt, &tv32, sizeof tv32);
2839  } else
2840 #endif
2841  error = sooptcopyout(sopt, &tv, sizeof tv);
2842  break;
2843 
2844  case SO_LABEL:
2845 #ifdef MAC
2846  error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2847  sizeof(extmac));
2848  if (error)
2849  goto bad;
2850  error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
2851  so, &extmac);
2852  if (error)
2853  goto bad;
2854  error = sooptcopyout(sopt, &extmac, sizeof extmac);
2855 #else
2856  error = EOPNOTSUPP;
2857 #endif
2858  break;
2859 
2860  case SO_PEERLABEL:
2861 #ifdef MAC
2862  error = sooptcopyin(sopt, &extmac, sizeof(extmac),
2863  sizeof(extmac));
2864  if (error)
2865  goto bad;
2866  error = mac_getsockopt_peerlabel(
2867  sopt->sopt_td->td_ucred, so, &extmac);
2868  if (error)
2869  goto bad;
2870  error = sooptcopyout(sopt, &extmac, sizeof extmac);
2871 #else
2872  error = EOPNOTSUPP;
2873 #endif
2874  break;
2875 
2876  case SO_LISTENQLIMIT:
2877  optval = so->so_qlimit;
2878  goto integer;
2879 
2880  case SO_LISTENQLEN:
2881  optval = so->so_qlen;
2882  goto integer;
2883 
2884  case SO_LISTENINCQLEN:
2885  optval = so->so_incqlen;
2886  goto integer;
2887 
2888  default:
2889  error = ENOPROTOOPT;
2890  break;
2891  }
2892  }
2893 #ifdef MAC
2894 bad:
2895 #endif
2896  CURVNET_RESTORE();
2897  return (error);
2898 }
2899 
2900 /* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
2901 int
2902 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
2903 {
2904  struct mbuf *m, *m_prev;
2905  int sopt_size = sopt->sopt_valsize;
2906 
2907  MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
2908  if (m == NULL)
2909  return ENOBUFS;
2910  if (sopt_size > MLEN) {
2911  MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT);
2912  if ((m->m_flags & M_EXT) == 0) {
2913  m_free(m);
2914  return ENOBUFS;
2915  }
2916  m->m_len = min(MCLBYTES, sopt_size);
2917  } else {
2918  m->m_len = min(MLEN, sopt_size);
2919  }
2920  sopt_size -= m->m_len;
2921  *mp = m;
2922  m_prev = m;
2923 
2924  while (sopt_size) {
2925  MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
2926  if (m == NULL) {
2927  m_freem(*mp);
2928  return ENOBUFS;
2929  }
2930  if (sopt_size > MLEN) {
2931  MCLGET(m, sopt->sopt_td != NULL ? M_WAIT :
2932  M_DONTWAIT);
2933  if ((m->m_flags & M_EXT) == 0) {
2934  m_freem(m);
2935  m_freem(*mp);
2936  return ENOBUFS;
2937  }
2938  m->m_len = min(MCLBYTES, sopt_size);
2939  } else {
2940  m->m_len = min(MLEN, sopt_size);
2941  }
2942  sopt_size -= m->m_len;
2943  m_prev->m_next = m;
2944  m_prev = m;
2945  }
2946  return (0);
2947 }
2948 
2949 /* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
2950 int
2951 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
2952 {
2953  struct mbuf *m0 = m;
2954 
2955  if (sopt->sopt_val == NULL)
2956  return (0);
2957  while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2958  if (sopt->sopt_td != NULL) {
2959  int error;
2960 
2961  error = copyin(sopt->sopt_val, mtod(m, char *),
2962  m->m_len);
2963  if (error != 0) {
2964  m_freem(m0);
2965  return(error);
2966  }
2967  } else
2968  bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
2969  sopt->sopt_valsize -= m->m_len;
2970  sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
2971  m = m->m_next;
2972  }
2973  if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
2974  panic("ip6_sooptmcopyin");
2975  return (0);
2976 }
2977 
2978 /* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
2979 int
2980 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
2981 {
2982  struct mbuf *m0 = m;
2983  size_t valsize = 0;
2984 
2985  if (sopt->sopt_val == NULL)
2986  return (0);
2987  while (m != NULL && sopt->sopt_valsize >= m->m_len) {
2988  if (sopt->sopt_td != NULL) {
2989  int error;
2990 
2991  error = copyout(mtod(m, char *), sopt->sopt_val,
2992  m->m_len);
2993  if (error != 0) {
2994  m_freem(m0);
2995  return(error);
2996  }
2997  } else
2998  bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
2999  sopt->sopt_valsize -= m->m_len;
3000  sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
3001  valsize += m->m_len;
3002  m = m->m_next;
3003  }
3004  if (m != NULL) {
3005  /* enough soopt buffer should be given from user-land */
3006  m_freem(m0);
3007  return(EINVAL);
3008  }
3009  sopt->sopt_valsize = valsize;
3010  return (0);
3011 }
3012 
3013 /*
3014  * sohasoutofband(): protocol notifies socket layer of the arrival of new
3015  * out-of-band data, which will then notify socket consumers.
3016  */
3017 void
3018 sohasoutofband(struct socket *so)
3019 {
3020 
3021  if (so->so_sigio != NULL)
3022  pgsigio(&so->so_sigio, SIGURG, 0);
3023  selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
3024 }
3025 
3026 int
3027 sopoll(struct socket *so, int events, struct ucred *active_cred,
3028  struct thread *td)
3029 {
3030 
3031  /*
3032  * We do not need to set or assert curvnet as long as everyone uses
3033  * sopoll_generic().
3034  */
3035  return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
3036  td));
3037 }
3038 
3039 int
3040 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
3041  struct thread *td)
3042 {
3043  int revents = 0;
3044 
3045  SOCKBUF_LOCK(&so->so_snd);
3046  SOCKBUF_LOCK(&so->so_rcv);
3047  if (events & (POLLIN | POLLRDNORM))
3048  if (soreadabledata(so))
3049  revents |= events & (POLLIN | POLLRDNORM);
3050 
3051  if (events & (POLLOUT | POLLWRNORM))
3052  if (sowriteable(so))
3053  revents |= events & (POLLOUT | POLLWRNORM);
3054 
3055  if (events & (POLLPRI | POLLRDBAND))
3056  if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
3057  revents |= events & (POLLPRI | POLLRDBAND);
3058 
3059  if ((events & POLLINIGNEOF) == 0) {
3060  if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3061  revents |= events & (POLLIN | POLLRDNORM);
3062  if (so->so_snd.sb_state & SBS_CANTSENDMORE)
3063  revents |= POLLHUP;
3064  }
3065  }
3066 
3067  if (revents == 0) {
3068  if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
3069  selrecord(td, &so->so_rcv.sb_sel);
3070  so->so_rcv.sb_flags |= SB_SEL;
3071  }
3072 
3073  if (events & (POLLOUT | POLLWRNORM)) {
3074  selrecord(td, &so->so_snd.sb_sel);
3075  so->so_snd.sb_flags |= SB_SEL;
3076  }
3077  }
3078 
3079  SOCKBUF_UNLOCK(&so->so_rcv);
3080  SOCKBUF_UNLOCK(&so->so_snd);
3081  return (revents);
3082 }
3083 
3084 int
3085 soo_kqfilter(struct file *fp, struct knote *kn)
3086 {
3087  struct socket *so = kn->kn_fp->f_data;
3088  struct sockbuf *sb;
3089 
3090  switch (kn->kn_filter) {
3091  case EVFILT_READ:
3092  if (so->so_options & SO_ACCEPTCONN)
3093  kn->kn_fop = &solisten_filtops;
3094  else
3095  kn->kn_fop = &soread_filtops;
3096  sb = &so->so_rcv;
3097  break;
3098  case EVFILT_WRITE:
3099  kn->kn_fop = &sowrite_filtops;
3100  sb = &so->so_snd;
3101  break;
3102  default:
3103  return (EINVAL);
3104  }
3105 
3106  SOCKBUF_LOCK(sb);
3107  knlist_add(&sb->sb_sel.si_note, kn, 1);
3108  sb->sb_flags |= SB_KNOTE;
3109  SOCKBUF_UNLOCK(sb);
3110  return (0);
3111 }
3112 
3113 /*
3114  * Some routines that return EOPNOTSUPP for entry points that are not
3115  * supported by a protocol. Fill in as needed.
3116  */
3117 int
3118 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
3119 {
3120 
3121  return EOPNOTSUPP;
3122 }
3123 
3124 int
3125 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
3126 {
3127 
3128  return EOPNOTSUPP;
3129 }
3130 
3131 int
3132 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3133 {
3134 
3135  return EOPNOTSUPP;
3136 }
3137 
3138 int
3139 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
3140 {
3141 
3142  return EOPNOTSUPP;
3143 }
3144 
3145 int
3146 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
3147 {
3148 
3149  return EOPNOTSUPP;
3150 }
3151 
3152 int
3153 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
3154  struct ifnet *ifp, struct thread *td)
3155 {
3156 
3157  return EOPNOTSUPP;
3158 }
3159 
3160 int
3161 pru_disconnect_notsupp(struct socket *so)
3162 {
3163 
3164  return EOPNOTSUPP;
3165 }
3166 
3167 int
3168 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
3169 {
3170 
3171  return EOPNOTSUPP;
3172 }
3173 
3174 int
3175 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
3176 {
3177 
3178  return EOPNOTSUPP;
3179 }
3180 
3181 int
3182 pru_rcvd_notsupp(struct socket *so, int flags)
3183 {
3184 
3185  return EOPNOTSUPP;
3186 }
3187 
3188 int
3189 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
3190 {
3191 
3192  return EOPNOTSUPP;
3193 }
3194 
3195 int
3196 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
3197  struct sockaddr *addr, struct mbuf *control, struct thread *td)
3198 {
3199 
3200  return EOPNOTSUPP;
3201 }
3202 
3203 /*
3204  * This isn't really a ``null'' operation, but it's the default one and
3205  * doesn't do anything destructive.
3206  */
3207 int
3208 pru_sense_null(struct socket *so, struct stat *sb)
3209 {
3210 
3211  sb->st_blksize = so->so_snd.sb_hiwat;
3212  return 0;
3213 }
3214 
3215 int
3216 pru_shutdown_notsupp(struct socket *so)
3217 {
3218 
3219  return EOPNOTSUPP;
3220 }
3221 
3222 int
3223 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
3224 {
3225 
3226  return EOPNOTSUPP;
3227 }
3228 
3229 int
3230 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
3231  struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
3232 {
3233 
3234  return EOPNOTSUPP;
3235 }
3236 
3237 int
3238 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
3239  struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3240 {
3241 
3242  return EOPNOTSUPP;
3243 }
3244 
3245 int
3246 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
3247  struct thread *td)
3248 {
3249 
3250  return EOPNOTSUPP;
3251 }
3252 
3253 static void
3255 {
3256  struct socket *so = kn->kn_fp->f_data;
3257 
3258  SOCKBUF_LOCK(&so->so_rcv);
3259  knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
3260  if (knlist_empty(&so->so_rcv.sb_sel.si_note))
3261  so->so_rcv.sb_flags &= ~SB_KNOTE;
3262  SOCKBUF_UNLOCK(&so->so_rcv);
3263 }
3264 
3265 /*ARGSUSED*/
3266 static int
3267 filt_soread(struct knote *kn, long hint)
3268 {
3269  struct socket *so;
3270 
3271  so = kn->kn_fp->f_data;
3272  SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3273 
3274  kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
3275  if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3276  kn->kn_flags |= EV_EOF;
3277  kn->kn_fflags = so->so_error;
3278  return (1);
3279  } else if (so->so_error) /* temporary udp error */
3280  return (1);
3281  else if (kn->kn_sfflags & NOTE_LOWAT)
3282  return (kn->kn_data >= kn->kn_sdata);
3283  else
3284  return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
3285 }
3286 
3287 static void
3289 {
3290  struct socket *so = kn->kn_fp->f_data;
3291 
3292  SOCKBUF_LOCK(&so->so_snd);
3293  knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
3294  if (knlist_empty(&so->so_snd.sb_sel.si_note))
3295  so->so_snd.sb_flags &= ~SB_KNOTE;
3296  SOCKBUF_UNLOCK(&so->so_snd);
3297 }
3298 
3299 /*ARGSUSED*/
3300 static int
3301 filt_sowrite(struct knote *kn, long hint)
3302 {
3303  struct socket *so;
3304 
3305  so = kn->kn_fp->f_data;
3306  SOCKBUF_LOCK_ASSERT(&so->so_snd);
3307  kn->kn_data = sbspace(&so->so_snd);
3308  if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
3309  kn->kn_flags |= EV_EOF;
3310  kn->kn_fflags = so->so_error;
3311  return (1);
3312  } else if (so->so_error) /* temporary udp error */
3313  return (1);
3314  else if (((so->so_state & SS_ISCONNECTED) == 0) &&
3315  (so->so_proto->pr_flags & PR_CONNREQUIRED))
3316  return (0);
3317  else if (kn->kn_sfflags & NOTE_LOWAT)
3318  return (kn->kn_data >= kn->kn_sdata);
3319  else
3320  return (kn->kn_data >= so->so_snd.sb_lowat);
3321 }
3322 
3323 /*ARGSUSED*/
3324 static int
3325 filt_solisten(struct knote *kn, long hint)
3326 {
3327  struct socket *so = kn->kn_fp->f_data;
3328 
3329  kn->kn_data = so->so_qlen;
3330  return (! TAILQ_EMPTY(&so->so_comp));
3331 }
3332 
3333 int
3334 socheckuid(struct socket *so, uid_t uid)
3335 {
3336 
3337  if (so == NULL)
3338  return (EPERM);
3339  if (so->so_cred->cr_uid != uid)
3340  return (EPERM);
3341  return (0);
3342 }
3343 
3344 /*
3345  * These functions are used by protocols to notify the socket layer (and its
3346  * consumers) of state changes in the sockets driven by protocol-side events.
3347  */
3348 
3349 /*
3350  * Procedures to manipulate state flags of socket and do appropriate wakeups.
3351  *
3352  * Normal sequence from the active (originating) side is that
3353  * soisconnecting() is called during processing of connect() call, resulting
3354  * in an eventual call to soisconnected() if/when the connection is
3355  * established. When the connection is torn down soisdisconnecting() is
3356  * called during processing of disconnect() call, and soisdisconnected() is
3357  * called when the connection to the peer is totally severed. The semantics
3358  * of these routines are such that connectionless protocols can call
3359  * soisconnected() and soisdisconnected() only, bypassing the in-progress
3360  * calls when setting up a ``connection'' takes no time.
3361  *
3362  * From the passive side, a socket is created with two queues of sockets:
3363  * so_incomp for connections in progress and so_comp for connections already
3364  * made and awaiting user acceptance. As a protocol is preparing incoming
3365  * connections, it creates a socket structure queued on so_incomp by calling
3366  * sonewconn(). When the connection is established, soisconnected() is
3367  * called, and transfers the socket structure to so_comp, making it available
3368  * to accept().
3369  *
3370  * If a socket is closed with sockets on either so_incomp or so_comp, these
3371  * sockets are dropped.
3372  *
3373  * If higher-level protocols are implemented in the kernel, the wakeups done
3374  * here will sometimes cause software-interrupt process scheduling.
3375  */
3376 void
3377 soisconnecting(struct socket *so)
3378 {
3379 
3380  SOCK_LOCK(so);
3381  so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
3382  so->so_state |= SS_ISCONNECTING;
3383  SOCK_UNLOCK(so);
3384 }
3385 
3386 void
3387 soisconnected(struct socket *so)
3388 {
3389  struct socket *head;
3390  int ret;
3391 
3392 restart:
3393  ACCEPT_LOCK();
3394  SOCK_LOCK(so);
3395  so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
3396  so->so_state |= SS_ISCONNECTED;
3397  head = so->so_head;
3398  if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
3399  if ((so->so_options & SO_ACCEPTFILTER) == 0) {
3400  SOCK_UNLOCK(so);
3401  TAILQ_REMOVE(&head->so_incomp, so, so_list);
3402  head->so_incqlen--;
3403  so->so_qstate &= ~SQ_INCOMP;
3404  TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
3405  head->so_qlen++;
3406  so->so_qstate |= SQ_COMP;
3407  ACCEPT_UNLOCK();
3408  sorwakeup(head);
3409  wakeup_one(&head->so_timeo);
3410  } else {
3411  ACCEPT_UNLOCK();
3412  soupcall_set(so, SO_RCV,
3413  head->so_accf->so_accept_filter->accf_callback,
3414  head->so_accf->so_accept_filter_arg);
3415  so->so_options &= ~SO_ACCEPTFILTER;
3416  ret = head->so_accf->so_accept_filter->accf_callback(so,
3417  head->so_accf->so_accept_filter_arg, M_DONTWAIT);
3418  if (ret == SU_ISCONNECTED)
3419  soupcall_clear(so, SO_RCV);
3420  SOCK_UNLOCK(so);
3421  if (ret == SU_ISCONNECTED)
3422  goto restart;
3423  }
3424  return;
3425  }
3426  SOCK_UNLOCK(so);
3427  ACCEPT_UNLOCK();
3428  wakeup(&so->so_timeo);
3429  sorwakeup(so);
3430  sowwakeup(so);
3431 }
3432 
3433 void
3434 soisdisconnecting(struct socket *so)
3435 {
3436 
3437  /*
3438  * Note: This code assumes that SOCK_LOCK(so) and
3439  * SOCKBUF_LOCK(&so->so_rcv) are the same.
3440  */
3441  SOCKBUF_LOCK(&so->so_rcv);
3442  so->so_state &= ~SS_ISCONNECTING;
3443  so->so_state |= SS_ISDISCONNECTING;
3444  so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3445  sorwakeup_locked(so);
3446  SOCKBUF_LOCK(&so->so_snd);
3447  so->so_snd.sb_state |= SBS_CANTSENDMORE;
3448  sowwakeup_locked(so);
3449  wakeup(&so->so_timeo);
3450 }
3451 
3452 void
3453 soisdisconnected(struct socket *so)
3454 {
3455 
3456  /*
3457  * Note: This code assumes that SOCK_LOCK(so) and
3458  * SOCKBUF_LOCK(&so->so_rcv) are the same.
3459  */
3460  SOCKBUF_LOCK(&so->so_rcv);
3461  so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
3462  so->so_state |= SS_ISDISCONNECTED;
3463  so->so_rcv.sb_state |= SBS_CANTRCVMORE;
3464  sorwakeup_locked(so);
3465  SOCKBUF_LOCK(&so->so_snd);
3466  so->so_snd.sb_state |= SBS_CANTSENDMORE;
3467  sbdrop_locked(&so->so_snd, so->so_snd.sb_cc);
3468  sowwakeup_locked(so);
3469  wakeup(&so->so_timeo);
3470 }
3471 
3472 /*
3473  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
3474  */
3475 struct sockaddr *
3476 sodupsockaddr(const struct sockaddr *sa, int mflags)
3477 {
3478  struct sockaddr *sa2;
3479 
3480  sa2 = malloc(sa->sa_len, M_SONAME, mflags);
3481  if (sa2)
3482  bcopy(sa, sa2, sa->sa_len);
3483  return sa2;
3484 }
3485 
3486 /*
3487  * Register per-socket buffer upcalls.
3488  */
3489 void
3490 soupcall_set(struct socket *so, int which,
3491  int (*func)(struct socket *, void *, int), void *arg)
3492 {
3493  struct sockbuf *sb;
3494 
3495  switch (which) {
3496  case SO_RCV:
3497  sb = &so->so_rcv;
3498  break;
3499  case SO_SND:
3500  sb = &so->so_snd;
3501  break;
3502  default:
3503  panic("soupcall_set: bad which");
3504  }
3505  SOCKBUF_LOCK_ASSERT(sb);
3506 #if 0
3507  /* XXX: accf_http actually wants to do this on purpose. */
3508  KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall"));
3509 #endif
3510  sb->sb_upcall = func;
3511  sb->sb_upcallarg = arg;
3512  sb->sb_flags |= SB_UPCALL;
3513 }
3514 
3515 void
3516 soupcall_clear(struct socket *so, int which)
3517 {
3518  struct sockbuf *sb;
3519 
3520  switch (which) {
3521  case SO_RCV:
3522  sb = &so->so_rcv;
3523  break;
3524  case SO_SND:
3525  sb = &so->so_snd;
3526  break;
3527  default:
3528  panic("soupcall_clear: bad which");
3529  }
3530  SOCKBUF_LOCK_ASSERT(sb);
3531  KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear"));
3532  sb->sb_upcall = NULL;
3533  sb->sb_upcallarg = NULL;
3534  sb->sb_flags &= ~SB_UPCALL;
3535 }
3536 
3537 /*
3538  * Create an external-format (``xsocket'') structure using the information in
3539  * the kernel-format socket structure pointed to by so. This is done to
3540  * reduce the spew of irrelevant information over this interface, to isolate
3541  * user code from changes in the kernel structure, and potentially to provide
3542  * information-hiding if we decide that some of this information should be
3543  * hidden from users.
3544  */
3545 void
3546 sotoxsocket(struct socket *so, struct xsocket *xso)
3547 {
3548 
3549  xso->xso_len = sizeof *xso;
3550  xso->xso_so = so;
3551  xso->so_type = so->so_type;
3552  xso->so_options = so->so_options;
3553  xso->so_linger = so->so_linger;
3554  xso->so_state = so->so_state;
3555  xso->so_pcb = so->so_pcb;
3556  xso->xso_protocol = so->so_proto->pr_protocol;
3557  xso->xso_family = so->so_proto->pr_domain->dom_family;
3558  xso->so_qlen = so->so_qlen;
3559  xso->so_incqlen = so->so_incqlen;
3560  xso->so_qlimit = so->so_qlimit;
3561  xso->so_timeo = so->so_timeo;
3562  xso->so_error = so->so_error;
3563  xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
3564  xso->so_oobmark = so->so_oobmark;
3565  sbtoxsockbuf(&so->so_snd, &xso->so_snd);
3566  sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
3567  xso->so_uid = so->so_cred->cr_uid;
3568 }
3569 
3570 
3571 /*
3572  * Socket accessor functions to provide external consumers with
3573  * a safe interface to socket state
3574  *
3575  */
3576 
3577 void
3578 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), void *arg)
3579 {
3580 
3581  TAILQ_FOREACH(so, &so->so_comp, so_list)
3582  func(so, arg);
3583 }
3584 
3585 struct sockbuf *
3586 so_sockbuf_rcv(struct socket *so)
3587 {
3588 
3589  return (&so->so_rcv);
3590 }
3591 
3592 struct sockbuf *
3593 so_sockbuf_snd(struct socket *so)
3594 {
3595 
3596  return (&so->so_snd);
3597 }
3598 
3599 int
3600 so_state_get(const struct socket *so)
3601 {
3602 
3603  return (so->so_state);
3604 }
3605 
3606 void
3607 so_state_set(struct socket *so, int val)
3608 {
3609 
3610  so->so_state = val;
3611 }
3612 
3613 int
3614 so_options_get(const struct socket *so)
3615 {
3616 
3617  return (so->so_options);
3618 }
3619 
3620 void
3621 so_options_set(struct socket *so, int val)
3622 {
3623 
3624  so->so_options = val;
3625 }
3626 
3627 int
3628 so_error_get(const struct socket *so)
3629 {
3630 
3631  return (so->so_error);
3632 }
3633 
3634 void
3635 so_error_set(struct socket *so, int val)
3636 {
3637 
3638  so->so_error = val;
3639 }
3640 
3641 int
3642 so_linger_get(const struct socket *so)
3643 {
3644 
3645  return (so->so_linger);
3646 }
3647 
3648 void
3649 so_linger_set(struct socket *so, int val)
3650 {
3651 
3652  so->so_linger = val;
3653 }
3654 
3655 struct protosw *
3656 so_protosw_get(const struct socket *so)
3657 {
3658 
3659  return (so->so_proto);
3660 }
3661 
3662 void
3663 so_protosw_set(struct socket *so, struct protosw *val)
3664 {
3665 
3666  so->so_proto = val;
3667 }
3668 
3669 void
3670 so_sorwakeup(struct socket *so)
3671 {
3672 
3673  sorwakeup(so);
3674 }
3675 
3676 void
3677 so_sowwakeup(struct socket *so)
3678 {
3679 
3680  sowwakeup(so);
3681 }
3682 
3683 void
3684 so_sorwakeup_locked(struct socket *so)
3685 {
3686 
3687  sorwakeup_locked(so);
3688 }
3689 
3690 void
3691 so_sowwakeup_locked(struct socket *so)
3692 {
3693 
3694  sowwakeup_locked(so);
3695 }
3696 
3697 void
3698 so_lock(struct socket *so)
3699 {
3700  SOCK_LOCK(so);
3701 }
3702 
3703 void
3704 so_unlock(struct socket *so)
3705 {
3706  SOCK_UNLOCK(so);
3707 }
int sbreserve(struct sockbuf *sb, u_long cc, struct socket *so, struct thread *td)
Definition: uipc_sockbuf.c:321
static void sodealloc(struct socket *so)
Definition: uipc_socket.c:366
void soisconnected(struct socket *so)
Definition: uipc_socket.c:3387
int tvtohz(struct timeval *tv)
Definition: kern_clock.c:590
void so_unlock(struct socket *so)
Definition: uipc_socket.c:3704
int pru_rcvd_notsupp(struct socket *so, int flags)
Definition: uipc_socket.c:3182
int pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
Definition: uipc_socket.c:3230
static int filt_sowrite(struct knote *kn, long hint)
Definition: uipc_socket.c:3301
so_gen_t so_gencnt
Definition: uipc_socket.c:178
int chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max)
static int somaxconn
Definition: uipc_socket.c:191
void soupcall_clear(struct socket *so, int which)
Definition: uipc_socket.c:3516
struct buf * buf
Definition: vfs_bio.c:97
int soo_kqfilter(struct file *fp, struct knote *kn)
Definition: uipc_socket.c:3085
int prison_check_af(struct ucred *cred, int af)
Definition: kern_jail.c:3348
void so_error_set(struct socket *so, int val)
Definition: uipc_socket.c:3635
int sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
Definition: uipc_socket.c:2717
int soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
Definition: uipc_socket.c:2191
void soisdisconnecting(struct socket *so)
Definition: uipc_socket.c:3434
void selrecord(struct thread *selector, struct selinfo *sip)
Definition: sys_generic.c:1606
void * malloc(unsigned long size, struct malloc_type *mtp, int flags)
Definition: kern_malloc.c:454
SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL)
uma_zone_t socket_zone
Definition: uipc_socket.c:254
static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
Definition: uipc_socket.c:194
void sbunlock(struct sockbuf *sb)
Definition: uipc_sockbuf.c:157
struct sockaddr * sodupsockaddr(const struct sockaddr *sa, int mflags)
Definition: uipc_socket.c:3476
static struct filterops soread_filtops
Definition: uipc_socket.c:167
int sbwait(struct sockbuf *sb)
Definition: uipc_sockbuf.c:124
static struct filterops solisten_filtops
Definition: uipc_socket.c:162
void so_protosw_set(struct socket *so, struct protosw *val)
Definition: uipc_socket.c:3663
static struct filterops sowrite_filtops
Definition: uipc_socket.c:172
void sohasoutofband(struct socket *so)
Definition: uipc_socket.c:3018
int soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
Definition: uipc_socket.c:1527
void panic(const char *fmt,...)
int pru_sense_null(struct socket *so, struct stat *sb)
Definition: uipc_socket.c:3208
int pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
Definition: uipc_socket.c:3168
int pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
Definition: uipc_socket.c:3175
static void socket_init(void *tag)
Definition: uipc_socket.c:265
struct mbuf * m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
Definition: uipc_mbuf.c:1727
__FBSDID("$BSDSUniX$")
void knote(struct knlist *list, long hint, int lockflags)
Definition: kern_event.c:1806
static void init_maxsockets(void *ignored)
Definition: uipc_socket.c:281
int knlist_empty(struct knlist *knl)
Definition: kern_event.c:1927
void selwakeuppri(struct selinfo *sip, int pri)
Definition: sys_generic.c:1664
int pru_disconnect_notsupp(struct socket *so)
Definition: uipc_socket.c:3161
int soaccept(struct socket *so, struct sockaddr **nam)
Definition: uipc_socket.c:876
static struct socket * soalloc(struct vnet *vnet)
Definition: uipc_socket.c:329
int sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
Definition: uipc_socket.c:2466
void solisten_proto(struct socket *so, int backlog)
Definition: uipc_socket.c:655
void socantrcvmore(struct socket *so)
Definition: uipc_sockbuf.c:112
void m_freem(struct mbuf *mb)
Definition: uipc_mbuf.c:157
struct mtx accept_mtx
Definition: uipc_socket.c:234
int solisten(struct socket *so, int backlog, struct thread *td)
Definition: uipc_socket.c:632
int sosetopt(struct socket *so, struct sockopt *sopt)
Definition: uipc_socket.c:2509
void knlist_destroy(struct knlist *knl)
Definition: kern_event.c:2002
void sbrelease_internal(struct sockbuf *sb, struct socket *so)
Definition: uipc_sockbuf.c:336
int * type
Definition: cpufreq_if.m:98
struct mbuf * m_copym(struct mbuf *m, int off0, int len, int wait)
Definition: uipc_mbuf.c:528
MTX_SYSINIT(accept_mtx,&accept_mtx,"accept", MTX_DEF)
int sodisconnect(struct socket *so)
Definition: uipc_socket.c:934
int sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
Definition: uipc_socket.c:609
void funsetown(struct sigio **sigiop)
Definition: kern_descrip.c:990
void wakeup_one(void *ident)
Definition: kern_synch.c:398
void sofree(struct socket *so)
Definition: uipc_socket.c:687
void sbdrop_locked(struct sockbuf *sb, int len)
Definition: uipc_sockbuf.c:927
int pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
Definition: uipc_socket.c:3238
struct socket * sonewconn(struct socket *head, int connstatus)
Definition: uipc_socket.c:484
int soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
Definition: uipc_socket.c:892
int so_setsockopt(struct socket *so, int level, int optname, void *optval, size_t optlen)
Definition: uipc_socket.c:2494
int ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
Definition: kern_time.c:911
int sblock(struct sockbuf *sb, int flags)
Definition: uipc_sockbuf.c:136
int soopt_getm(struct sockopt *sopt, struct mbuf **mp)
Definition: uipc_socket.c:2902
void so_sorwakeup(struct socket *so)
Definition: uipc_socket.c:3670
int maxfiles
Definition: subr_param.c:89
int so_state_get(const struct socket *so)
Definition: uipc_socket.c:3600
void so_lock(struct socket *so)
Definition: uipc_socket.c:3698
int soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
Definition: uipc_socket.c:2980
void knlist_remove(struct knlist *knl, struct knote *kn, int islocked)
Definition: kern_event.c:1909
int sopoll(struct socket *so, int events, struct ucred *active_cred, struct thread *td)
Definition: uipc_socket.c:3027
void soupcall_set(struct socket *so, int which, int(*func)(struct socket *, void *, int), void *arg)
Definition: uipc_socket.c:3490
int soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
Definition: uipc_socket.c:1990
MALLOC_DEFINE(M_SONAME,"soname","socket name")
void sorflush(struct socket *so)
Definition: uipc_socket.c:2412
static int sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
Definition: uipc_socket.c:294
int maxsockets
Definition: uipc_socket.c:255
#define SBLOCKWAIT(f)
Definition: uipc_socket.c:1054
void soabort(struct socket *so)
Definition: uipc_socket.c:852
SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0,"IPC")
struct protosw * pffindproto(int family, int protocol, int type)
Definition: uipc_domain.c:291
static int numopensockets
Definition: uipc_socket.c:214
void seldrain(struct selinfo *sip)
Definition: sys_generic.c:1587
int m_mbuftouio(struct uio *uio, struct mbuf *m, int len)
Definition: uipc_mbuf.c:1783
void soisconnecting(struct socket *so)
Definition: uipc_socket.c:3377
void crfree(struct ucred *cr)
Definition: kern_prot.c:1835
static int filt_solisten(struct knote *kn, long hint)
Definition: uipc_socket.c:3325
SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,&numopensockets, 0,"Number of open sockets")
int pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
Definition: uipc_socket.c:3139
int pru_connect2_notsupp(struct socket *so1, struct socket *so2)
Definition: uipc_socket.c:3146
int so_linger_get(const struct socket *so)
Definition: uipc_socket.c:3642
int soconnect2(struct socket *so1, struct socket *so2)
Definition: uipc_socket.c:923
int sysctl_handle_int(SYSCTL_HANDLER_ARGS)
Definition: kern_sysctl.c:986
static void filt_sordetach(struct knote *kn)
Definition: uipc_socket.c:3254
void sbdestroy(struct sockbuf *sb, struct socket *so)
Definition: uipc_sockbuf.c:364
void knlist_add(struct knlist *knl, struct knote *kn, int islocked)
Definition: kern_event.c:1866
void log(int level, const char *fmt,...)
Definition: subr_prf.c:289
void so_options_set(struct socket *so, int val)
Definition: uipc_socket.c:3621
int pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
Definition: uipc_socket.c:3125
int pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *td)
Definition: uipc_socket.c:3196
static void socket_zone_change(void *tag)
Definition: uipc_socket.c:258
static void filt_sowdetach(struct knote *kn)
Definition: uipc_socket.c:3288
int do_getopt_accept_filter(struct socket *so, struct sockopt *sopt)
Definition: uipc_accf.c:166
struct ucred * crhold(struct ucred *cr)
Definition: kern_prot.c:1824
void sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
static int filt_soread(struct knote *kn, long hint)
Definition: uipc_socket.c:3267
int uiomove(void *cp, int n, struct uio *uio)
Definition: subr_uio.c:202
int soshutdown(struct socket *so, int how)
Definition: uipc_socket.c:2386
struct protosw * so_protosw_get(const struct socket *so)
Definition: uipc_socket.c:3656
int sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
Definition: uipc_socket.c:1414
struct protosw * pffindtype(int family, int type)
Definition: uipc_domain.c:274
int sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
Definition: uipc_socket.c:1057
void so_state_set(struct socket *so, int val)
Definition: uipc_socket.c:3607
int do_setopt_accept_filter(struct socket *so, struct sockopt *sopt)
Definition: uipc_accf.c:195
#define VNET_SO_ASSERT(so)
Definition: uipc_socket.c:183
int pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, struct thread *td)
Definition: uipc_socket.c:3246
void m_cat(struct mbuf *m, struct mbuf *n)
Definition: uipc_mbuf.c:910
static struct mtx so_global_mtx
Definition: uipc_socket.c:241
int sogetopt(struct socket *so, struct sockopt *sopt)
Definition: uipc_socket.c:2744
int pru_shutdown_notsupp(struct socket *so)
Definition: uipc_socket.c:3216
int soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
Definition: uipc_sockbuf.c:241
struct sockbuf * so_sockbuf_snd(struct socket *so)
Definition: uipc_socket.c:3593
void so_sorwakeup_locked(struct socket *so)
Definition: uipc_socket.c:3684
void wakeup(void *ident)
Definition: kern_synch.c:378
void so_sowwakeup_locked(struct socket *so)
Definition: uipc_socket.c:3691
int sopoll_generic(struct socket *so, int events, struct ucred *active_cred, struct thread *td)
Definition: uipc_socket.c:3040
int pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
Definition: uipc_socket.c:3118
int soclose(struct socket *so)
Definition: uipc_socket.c:765
int pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td)
Definition: uipc_socket.c:3153
int pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
Definition: uipc_socket.c:3132
int max_hdr
Definition: uipc_mbuf.c:53
void sbdroprecord_locked(struct sockbuf *sb)
int pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
Definition: uipc_socket.c:3223
static __inline void sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
Definition: uipc_socket.c:1483
int so_error_get(const struct socket *so)
Definition: uipc_socket.c:3628
int socheckuid(struct socket *so, uid_t uid)
Definition: uipc_socket.c:3334
void soisdisconnected(struct socket *so)
Definition: uipc_socket.c:3453
int socreate(int dom, struct socket **aso, int type, int proto, struct ucred *cred, struct thread *td)
Definition: uipc_socket.c:408
struct sockbuf * so_sockbuf_rcv(struct socket *so)
Definition: uipc_socket.c:3586
void so_sowwakeup(struct socket *so)
Definition: uipc_socket.c:3677
int so_options_get(const struct socket *so)
Definition: uipc_socket.c:3614
int solisten_proto_check(struct socket *so)
Definition: uipc_socket.c:643
int sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
Definition: uipc_socket.c:1230
int tick
Definition: subr_param.c:85
void sotoxsocket(struct socket *so, struct xsocket *xso)
Definition: uipc_socket.c:3546
void so_listeners_apply_all(struct socket *so, void(*func)(struct socket *, void *), void *arg)
Definition: uipc_socket.c:3578
static struct pollrec pr[POLL_LIST_LEN]
Definition: kern_poll.c:254
int socow_setup(struct mbuf *m0, struct uio *uio)
Definition: uipc_cow.c:100
void knlist_init_mtx(struct knlist *knl, struct mtx *lock)
Definition: kern_event.c:1995
void so_linger_set(struct socket *so, int val)
Definition: uipc_socket.c:3649
SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT|CTLFLAG_RW, 0, sizeof(int), sysctl_somaxconn,"I","Maximum listen socket pending connection accept queue size")
int soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
Definition: uipc_socket.c:2373
static int soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
Definition: uipc_socket.c:1435
void pgsigio(struct sigio **sigiop, int sig, int checkctty)
Definition: kern_sig.c:3372
int pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
Definition: uipc_socket.c:3189
const struct cf_level * level
Definition: cpufreq_if.m:45
int soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
Definition: uipc_socket.c:2951
void sx_destroy(struct sx *sx)
Definition: kern_sx.c:234
int hz
Definition: subr_param.c:84